Солнечные электростанции: усовершенствование технологий

Информация - Физика

Другие материалы по предмету Физика

µньше, чем у вышеперечисленных электростанций.

 

Развитие электроустановок солнечных электростанций

 

По данным аналитиков текущий объем рынка солнечных батарей составляет около 24 миллиардов долларов. На солнечную энергетику приходится менее 0,04% мирового производства энергии, но если покрыть солнечными панелями всего лишь 4% пустынь Земли, этого хватит, чтобы удовлетворить все потребности человечества в энергии. Пыль была одним из главных препятствий в строительстве солнечных электростанций в безжизненных засушливых регионах, но с новой технологией самоочистки солнечных батарей, возможно, там развернется масштабное строительство.

Не так давно, ученые нашли решение проблемы пыли. Они разработали самоочищающиеся солнечные батареи, чтобы решить проблему, которая, конечно не совсем, но тормозит развитие солнечной энергетики. Солнечные батареи будут сами очищать себя от пыли - такое раньше казалось трудно реализовать. Но ученые из Американского химического общества предложили выход - самоочищающиеся солнечные батареи на основе новых технологий, разработанных для космических полетов.

Основа инновационной технологии самоочистки солнечных батарей - тонкая прозрачная электрочувствительная пленка, которая наносится на стекло или пластиковое покрытие солнечных панелей. Если концентрация пыли достигает критического уровня - специальные датчики активизируют пленку, которая с помощью электрического разряда отталкивает пыль. Образуется волна пыли, которая толкает загрязняющие частицы к краям солнечной панели и сбрасывает их на землю. По такой технологии удаляется около 90% пыли в течение 2 минут. Для работы системы требуется совсем немного электроэнергии. Эта новая технология изначально разрабатывалась совместно с NASA для использования в полетах на Луну и Марс, которые известны своей пыльной и сухой средой.

Например, в Аризоне каждый месяц на солнечной панели осаждается примерно в 4 раза больше пыли, Ближний Восток, Австралия и Индия - еще более пыльные регионы. Пыль смывают водой, но это дорого, да и найти воду в пустыне, месте, где выгоднее всего устанавливать солнечные панели, весьма проблематично.

Ещё одну идею предложили американские учёные компании Stirling Energy. В большинстве солнечных электростанций огромные конструкции из зеркал концентрируют солнечную энергию, отдают ее теплоносителю, а тот приводит в действие большую центральную турбину. В установках компании Stirling Energy, под названием SunCatcher, каждая 13-метровая тарелка питает энергией свою машину Стирлинга, расположенную прямо в фокусе зеркала. Такая машина сама по себе выдает свои 25 кВт электричества. Таким образом, подобная установка может работать как автономно, так и в составе ансамбля из 30 000 себе подобных.

Машина Стирлинга, показанная на рисунке 1, это система замкнутого цикла. В этой машине механическую энергию получают за счет внешнего источника тепла, что принципиально отличается от действия двигателей внутреннего сгорания, работающих под капотами большинства автомобилей. Внутри четырех цилиндров объемом по 95 см3 содержится газообразный водород - при нагревании и охлаждении он расширяется и сжимается, поршни в цилиндрах движутся туда-сюда, а от них вращается небольшой электрогенератор. И параболическая тарелка, и данный двигатель - плоды целого десятилетия упорной работы, которая проводилась в сотрудничестве с компанией Stirling Energy Systems.

 

Рисунок 1 - машина Стирлинга

 

Испытание электроустановки происходили в пустыне. Температура была около нуля, а небо было на 8% прозрачнее, чем обычно. Чем больше разница между холодным воздухом и жарким солнцем, тем эффективнее работает эта машина. И вот 25-киловаттная система начала выдавать электроэнергию. Коэффициент преобразования оказался самым высоким из всех, когда-либо достигнутых в коммерческих солнечных установках: 31,25% солнечной энергии, падающей на зеркальную тарелку, отдавалось в виде тока в электросеть.

Революционное преимущество новой технологии состоит в том, что солнечные лучи концентрируются в одном очень небольшом пятне. Это позволяет достичь средней температуры 800С, сравните с 400С, которые достигаются в рабочем режиме установки на базе параболического желоба, Кроме того, кривая, отражающая коэффициент полезного действия машины Стирлинга, имеет относительно длинное плоское плато. Иначе говоря, энергоотдача будет близка к максимуму, даже если солнце склоняется к закату или его прикрывают облака.

Модульная структура станции имеет и другое важное достоинство. Поскольку каждый 25-киловаттный SunCatcher работает на собственную машину Стирлинга и вырабатывает электроэнергию совершенно автономно, система не имеет таких узлов, которые в случае отказа угрожали бы работоспособности всей системы. В альтернативной конструкции с параболическим желобом все эти тысячи зеркал работают на одну центральную турбину, так что при остановке турбины хотя бы для профилактики подача электроэнергии сразу должна прекратиться. И еще один момент: вариант SunCatcher позволяет начать отпуск энергии задолго до того, как строительство электростанции будет закончено. Достаточно будет собрать первые 40 тарелок - солнечную группу - и станция начнет вырабатывать электроэнергию, для начала хотя бы 1 МВт.

Брюс Осборн, президент и компании Stirling Energy, считает этот результат просто дополнительным подтверждением тому, что он давно уже знал: система SunCatcher достаточно созрела, чтобы выйти из с