Современные методы изучения вещества просвечивающий электронный микроскоп

Дипломная работа - Физика

Другие дипломы по предмету Физика

? дифракции образом, то изображение состоит из сфокусированных пятен. Если электронный луч попадает сразу на несколько зерен беспорядочно ориентированного поликристалла, дифракция создается многочисленными плоскостями, образуется картина из дифракционных колец. По местоположению колец или пятен можно установить структуру вещества (например, нитрид или карбид), его химический состав, ориентацию кристаллографических плоскостей и расстояние между ними.

 

2.1 Источники электронов

 

Обычно используются четыре типа источников электронов: вольфрамовые V-образные катоды, вольфрамовые точечные (острийные) катоды, источники из гексаборида лантана и автоэлектронные источники. В данной главе кратко рассматриваются преимущества каждого вида источника электронов для просвечивающей электронной микроскопии высокого разрешения и их характеристики. К источникам электронов, используемым в электронной микроскопии высокого разрешения, предъявляются следующие основные требования:

  1. Высокая яркость (плотность тока на единицу телесного угла). Выполнение этого требования существенно для экспериментов при получении изображений высокого разрешения с фазовым контрастом, когда необходимо сочетать малую апертуру освещения с достаточной величиной плотности тока, что дает возможность точно фокусировать изображение при большом увеличении.
  2. Высокая эффективность использования электронов (отношение яркости к полной величине тока первичного пучка электронов), которая достигается за счет малого размера источника. Уменьшение освещаемой области образца снижает его нагревание и тепловой дрейф в процессе экспозиции.
  3. Большое время жизни при имеющемся вакууме.
  4. Стабильная эмиссия при длительной (до минуты) экспозиции, характерной в микроскопии высокого разрешения.

Идеальной системой освещения для обычного просвечивающего микроскопа высокого разрешения была бы система, позволяющая оператору независимо контролировать размер освещаемой области образца, интенсивность освещения и когерентность пучка. Такие возможности достигаются только при работе с автоэлектронным источником. Однако для большинства лабораторий использование вольфрамового точечного катода является наилучшим компромиссом, приемлемым как по стоимости, так и по рабочим характеристикам для просвечивающей микроскопии высокого разрешения. В настоящее время рассматривается также возможность использования источников из гексаборида лантана. Перспективным является также катод, нагреваемый лучом лазера, яркость которого, как сообщается, в 3000 раз превосходит яркость V-образного катода при эффективном диаметре источника порядка 10 нм. Эти катоды работают при умеренном вакууме (10-4 Тор).

 

2.2.Система освещения

 

Образец

Рисунок 6 - Осветительная система современного электронного микроскопа

 

Система имеет две конденсорные линзы С1 (сильная линза) и С2 (слабая линза). F - катод; W - цилиндр Вепельта; S - мнимый источник электронов, S' и S" - его изображения; СА2 - вторая конденсорная диафрагма. Расстояния U1, U2, V1, V2 являются электронно-оптическими параметрами, тогда как расстояния D1, D2, D3 легко измеряются в колонне микроскопа. [4].

На рис. 6 представлены две конденсорные линзы, входящие в систему освещения электронного микроскопа. Обычно можно осуществить независимое изменение фокусного расстояния этих линз (С1 и С2). Возбуждение первой конденсорной линзы изменяют с помощью регулировочной ручки, называемой иногда "размер пятна". Обычно выбирается такое возбуждение, при котором плоскости S, S' и поверхность образца являются сопряженными, т. е. чтобы сфокусированное изображение источника формировалось на образце (сфокусированное освещение).

Для V-образного катода размер источника приблизительно равен 30 мкм. Для предотвращения нежелательного нагрева и радиационного повреждения образца на нем нужно сформировать уменьшенное изображение источника. Рабочее расстояние D3 также должно быть достаточно большим, чтобы имелась возможность перемещения объектодержателя при смене образца. При использовании одной конденсорной линзы трудно удовлетворить этим противоречивым требованиям - малое увеличение при большом расстоянии D3 - так как для этого необходимо, чтобы расстояние D1 было чрезмерно большим. Поэтому обычно используется сильная первая конденсорная линза С1, служащая для уменьшения изображения источника в 5 - 100 раз, а следующая за первой вторая слабая линза С2 с увеличением около 3 обеспечивает большое рабочее расстояние,

 

2.3 Коррекция астигматизма

 

Регулировка стигматора объективной линзы весьма критична для обеспечения высокого разрешения. В некоторых приборах астигматизм регулируется как по направлению, так и по силе, в то время как в других предусмотрена регулировка силы астигматизма в двух фиксированных ортогональных направлениях. Прежде всего следует грубо скорректировать астигматизм с помощью стигматора до получения симметричности кольца Френеля. При работе с высоким разрешением необходимо возможно более точно скорректировать астигматизм, что можно сделать по изображению структуры тонкой аморфной угольной пленки при большом увеличении. Для тщательной корректировки астигматизма на деталях такого изображения размером 0,3 нм необходимы увеличение микроскопа по крайней мере 400 000-крат