Системы охлаждения для персонального компьютера и их разновидности

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



Вµе излишки уходили из зазора при прижатии С.О. механизмом крепления. Этим требованиям удовлетворяют силиконовые масла.

В качестве наполнителя для термопаст используют микро-дисперсные порошки, чтобы увеличить теплопроводность и уменьшить негативное воздействие шероховатостей охлаждаемого элемента и С.О., химический состав порошков:

. Оксидов металлов (цинка, алюминия и других металлов);

. Нитридов (бора, алюминия);

. Металлов (серебро, медь, вольфрам);

. Чистые металлы (индий);

Размер частиц имеет существенное влияние на теплопроводность паст

и измеряется в микрометрах.

Исходя из компонентов термопасты можно судить о её характеристиках, теперь о них:

. Удельное сопротивление термопасты и изоляционные свойства.

. Консистенция.

. Теплопроводность и удельная теплопроводность.

. Наполнитель.

Организация воздушных потоков в корпусе ПК

Немаловажную роль в охлаждении ПК играет такая организация, т.к. в противном случае нагретый воздух в корпусе может нарушить температурный режим, предписанный в технических требованиях или характеристиках, следствием этого может встать выход из строя любого из узлов ПК, что может, в свою очередь, означать прекращение работы всей системы.

Поэтому из корпуса ПК должен отводиться нагретый воздух, в связи с этим есть три способа управления воздушными потоками:

. Пассивный;

. Активный;

. Комбинированный - сочетание активного и пассивного;

Для оптимального охлаждения с приемлемым уровнем шума вентиляторов в современных ПК нужно соблюдать два требования:

. Соблюдать теплообмен между корпусом ПК и окружающей средой, а для этого нужно обеспечить низкие потери давления в системе вентиляции корпуса. Заодно это может уменьшить шум вентиляторов.

. Организовать в корпусе ПК воздушные потоки так, чтобы они омывали нагревающиеся узлы. Это обеспечит подачу к ним охлаждающего воздуха с температурой приближающейся температуре воздуха за пределами корпуса.

Организация воздушных потоков до сих пор является проблемой, по которой есть множество эффективных и не очень решений, но всё же есть общая идеология представленная корпорацией Intel, которая так и называется "идеология воздуховодов". Она изображена на скриншоте.

Хотя и здесь есть проблемные зоны, они отмечены числами 1 и 2.

В первой зоне при наличии плат расширения может возникнуть серьёзное препятствие прохождению воздуха.

Во второй зоне обычно проходят кабели питания и шлейфы.

Также везде соблюдается такая закономерность:

Не хотите мириться с большим корпусом - терпите шум, издаваемый множеством вентиляторов маленького. Ведь необходимый объем (массу) воздуха прокачивать надо. А для этого надо совершить работу, которая тем больше чем больше сопротивление воздушному потоку.

Теперь о способах управления воздушными потоками:

. Пассивный

Для этого больше подходит корпус с малым аэродинамическим сопротивлением, в корпусе с большим аэродинамическим сопротивлением это практически невозможно, потому что среди множества проходных сечений в нем, равных по сопротивлению, невозможно создать преобладающий воздушный поток.

Рисунок 1.

В сложном сечении, показанном на рисунке, объем воздуха V2, V3, V4, V5 распределяется пропорционально площади элементарного сечения S2, S3, S4, S5. Сечения показаны в плоскости, хотя реально они расположены в трех координатах X,Y,Z в каждом рассматриваемом сечении. Так же условно сечения разделены на отдельные элементы.

При этом объем воздуха на выходе Vвых равен сумме объемов V2, V3, V4, V5, умноженных на коэффициент k, походящих через сечения S2, S3, S4, S5.

При малых перегревах воздуха (до 5 град. С) коэффициент k можно не учитывать.

вх = kV2 + kV3 + kV4 + kV5 = Vвых = kVвх

- коэффициент определяющий увеличение объема воздуха при нагреве его от температуры tвх до tвых.

Таким образом, задавая площади элементарных сечений можно распределять объем проходящего через них воздуха в любом необходимом сечении корпуса.

Хотя более удобно оперировать в этих вычислениях массой воздуха m, которая не зависит от нагрева.

вх = m2 + m3 + m4 + m5 = mвых [2]

Для рассмотренного на рисунке объема можно применить правило:

Сумма масс (m) воздуха входящих в любой охлаждаемый объем равна сумме масс воздуха проходящего в любом проходном сечении этого объема и равна сумме масс выходящего из объема воздуха.

Но необходимо помнить! Что масса воздуха на входе и выходе из охлаждаемого объема равны, а объем нагретого воздуха больше объема воздуха на входе. Объем воздуха на выходе зависит от температуры нагрева.

. Комбинированный.

Для того чтобы объяснить активный способ распределения воздушных потоков рассмотрим комбинированный способ, где активная ветвь работает наиболее наглядно, где активная ветвь берет на себя до 50% общего воздушного потока. Но больших величинах растет аэродинамическое сопротивление корпуса. Корпус тоже лучше взять с низким аэродинамическим сопротивлением. Зачем нужно такое регулирование? Оно позволяет направить в нужное вам место требуемое количество воздуха, а остальной воздух распределить с помощью пассивного способа. Там где вы выделяете из общего воздушного потока дозированное количество и есть зона активного регулирования.

Активное охлаждение чаще обеспечивается вентиляторами.

Вентилятор имеет расходные характеристики, приведен