Системный подход в современной науке и технике

Информация - Философия

Другие материалы по предмету Философия



предмета научного познания.

Таким образом, можно сделать вывод, что система есть форма представления предмета научного познания. И в этом смысле она является фундаментальной и универсальной категорией. Все научное знание с момента его зарождения в Древней Греции строило предмет познания в виде системы.

Принцип системности лежит в основе методологии, выражающий философские аспекты системного подхода и служащий основой изучения сущности и всеобщих черт системного знания, его гносеологических оснований и категориально-понятийного аппарата, истории системных идей и системоцентрических приемов мышления, анализа системных закономерностей различных областей объективной действительности. В реальном процессе научного познания конкретно-научного и философского направлений системные знания взаимодополняют друг друга, образуя систему знаний в системность. В истории познания выделение системных черт целостных явлений было связано с изучением отношений части и целого, закономерностей состава и структуры, внутренних связей и взаимодействий элементов, свойств интеграции, иерархии, субординации. Дифференциация научного знания порождает существенную потребность в системном синтезе знаний, в преодолении диiиплинарной узости, порожденной предметной или методологической специализацией знания.

С другой стороны, умножение разноуровневых и разнопорядковых знаний о предмете обусловливает необходимость в таком системном синтезе, который расширяет понимание предмета познания при исследовании все более глубоких оснований бытия и более системного изучения внешних взаимодействий. Важное значение имеет также и системный синтез разнообразных знаний, являющийся средством перспективного планирования, предвидения результатов практической деятельности, моделирования вариантов развития и их последствий и т. п.

Подводя итоги, видно, что в процессе человеческой деятельности принцип системности и следствия из него наполняются конкретным практическим содержанием, при этом реализация данного принципа может идти по следующим основным стратегическим направлениям.

1.Исследуются реально существующие объекты, рассматриваемые как системы, на основе системного подхода, путем выделения в этих объектах системных свойств и закономерностей, которые в дальнейшем могут быть изучены (отображены) частными методами конкретных наук.

2.На основе системного подхода, по априорному определению системы, уточняемому итерационно в процессе исследования, строится системная модель реального объекта. Эта модель в дальнейшем заменяет реальный объект в процессе исследования. При этом исследование системной модели может быть реализовано на основе как системологических концепций, так и частных методов конкретных наук.

3.Совокупность системных моделей, рассматриваемая отдельно от моделируемых объектов, сама может представлять собой объект научного исследования. При этом рассматриваются наиболее общие инварианты, способы построения и функционирования системных моделей, определяется область их применения[9].

Так, например, используем определение, представленное в [10]: Система есть множество связанных между собой компонентов той или иной природы, упорядоченное по отношениям, обладающим вполне определенными свойствами; это множество характеризуется единством, которое выражается в интегральных свойствах и функциях множества. Соответственно отметим, что во-первых: любые системы состоят из исходных единиц компонентов. В качестве компонентов системы могут рассматриваться объекты, свойства, связи, отношения, состояния, фазы функционирования, стадии развития. В рамках данной системы и на данном уровне абстракции компоненты представляются как неделимые, целостные и различимые единицы, то есть исследователь абстрагируется от их внутреннего строения, но сохраняет сведения об их эмпирических свойствах.

Составляющие систему объекты могут быть материальными (например, атомы, составляющие молекулы, клетки, составляющие органы) или идеальными (например, различные виды числа составляют элементы теоретической системы, называемой теорией чисел).

Свойства системы, специфичные для данного класса объектов могут стать компонентами системного анализа. Например, свойствами термодинамической системы могут быть температура, давление, объем, а напряженность поля, диэлектрическая проницаемость среды поляризация диэлектрика по сути свойства электростатических систем. Свойства могут быть как изменяющимися, так и неизменными при данных условиях существования системы. Свойства могут быть внутренними (собственными) и внешними. Собственные свойства зависят только от связей (взаимодействий) внутри системы, это свойства системы самой по себе. Внешние свойства актуально существуют лишь тогда, когда имеются связи, взаимодействия с внешними объектами (системами).

Связи изучаемого объекта также могут быть компонентами при его системном анализе. Связи имеют вещественно-энергетический, субстанциальный характер. Аналогично свойствам, связи могут быть внутренними и внешними для данной системы. Так, если мы описываем механическое движение тела как динамическую систему, то по отношению к этому телу связи имеют внешний характер. Если же рассмотреть более крупную систему из нескольких взаимодействующих тел, то те же механические связи следует считать внутренними по отношению к этой системе.

Отношения отличаются от связей те