Симметрия в неживой природе
Информация - Геодезия и Геология
Другие материалы по предмету Геодезия и Геология
sp;
Можно обнаружить широкое распространение проявлений симметрии в строении геологических тел самых различных размеров и происхождения, входящих в состав земной коры. Среди этих проявлений симметрии значительную часть составляют разнообразные симметричные структуры, образование которых связано с разрядкой механических напряжений, возникающих в геологических телах по разным причинам (тектонические движения, сокращение объема при охлаждении или дегидратации и т. д.). Обращение к симметрии этих структур, к закономерной повторяемости их элементов (структурных форм) позволяет подойти к рассмотрению механизмов образования таких структур с принципиально новых позиций.
До сих пор говорилось лишь об элементах симметрии и их сочетаниях, т. е. об общих закономерностях повторяемости фигур и их частей. В кристаллографии, как известно, этим дело не ограничивается, а, исходя из тех же законов симметрии, выводятся формы кристаллических фигур.
Рис. 1. Примеры симметричного распределения геологических структурных форм. б "лестничные" жилы; д ступенчатый сброс; е наклонные складки; ж прямые складки.
Вспомним, что простыми гранными формами называются совокупности граней, связанных друг с другом элементами симметрии. По-видимому, в некоторых случаях целесообразно воспользоваться этими понятиями геометрической кристаллографии и применить их для характеристики геологических объектов.
В качестве примера рассмотрим простейшие формы блоков пород, изображенные на рис. 2. Так, например, купола, конусовидные вулканы, кольцевые дайки, штоки и некоторые другие структуры обладают вертикальной осью симметрии бесконечного (полная их симметрия симметрия конуса L P т). Из других осей симметрии в геология чаще всего встречаются оси второго порядка. Например, симметрия сундучных складок L2 2P 2mm (рис. 2).
Вспомнив кристаллографические модели простых форм и их комбинаций, мы без труда найдем здесь пинакоиды, различные призмы и кубы. Конусообразную форму вулкана можно уподобить п-гональной пирамиде, а горные хребты комбинациям диэдров.
Рис. 2. Простые геологические структуры: а) куполообразная; б) сундучная.
Нам могут возразить, что приведенные здесь и далее примеры являются сугубо идеализированными. Однако вспомним, что и кристаллографические модели являются обобщенными идеализациями реальных форм. Идеализация с помощью статистических данных широко используется кристаллографами. Очевидно, аналогичные приемы могут быть рекомендованы и для геометризации геологических объектов.
Возникает вопрос: почему геометрические закономерности в распределении структурных форм сравнительно редко отмечались до сих пор в геологической литературе.
По-видимому, имеется ряд причин, затрудняющих их выявление. Выше уже говорилось о необходимости обобщать и статистически идеализировать такие явления. Неоднородность строения геологических тел и их масштабы затрудняют подобные исследования. Следует иметь в виду также и то, что зачастую мы имеем дело со случайными срезами, неблагоприятными для выявления закономерностей симметрии. Кроме того, сами закономерности симметрии могут быть. достаточно сложными (например, в случае наличия плоскостей скользящего отражения или винтовых осей) и не бросаются в глаза при случайном взгляде на случайный срез структуры. Наконец, играют роль и некоторая сложность понятийного аппарата симметрии и недостаточная устремленность геологов пользоваться им.
Вместе с тем еще и еще раз следует подчеркнуть, что симметрия геологических образований подчиняется в общем тем же законам симметрии, которые хорошо известны в геометрии и кристаллографии. Анализ сетчатых систем трещин с особой убедительностью иллюстрирует сказанное. Во всех разобранных выше примерах не встречалось ни одного элемента симметрии и ни одной их совокупности, которые не были бы известны кристаллографам (оси бесконечного порядка, невозможные для кристаллических полиэдров, широко используются при характеристике оптических индикатрис). Пространственные группы Е. С. Федорова, сетки и решетки О. Браве, симметрия лент, бордюров и стержней все это широко реализуется в геологических структурах.
Подводя некоторый итог, следует особо подчеркнуть всеобъемлющее значение строго математических законов симметрии пронизывающих все естествознание, а тем самым охватывающих и все без исключения объекты геолого-минералогических наук.
Исключительную роль в этом отношении играет вытекающий из принципа П. Кюри закон формирования природных тел в поле земного тяготения:
Все что растет или движется по вертикали приобретает симметрию Ln nP пт, все, что растет или движется по горизонтали, получает симметрию Р т (или 1).
Невольно напрашивается идея о широком использовании этого закона для выявления процессов формирования геологических объектов.
При рассмотрении разнородных геологических образований нам пришлось помимо классической использовать новые понятия расширенной симметрии, учения об антисимметрии и динамической симметрии. Все эти понятия образуют единый методологический комплекс. Учение о симметрии в геологи, формирующееся на границе геометрической кристаллографии и наук геологического цикла, является сейчас новым научным направлением, требующим всемерного углубления и дальнейшего развития. Объектом этой новой дисциплины являются геометрические закономерности как всей планеты в цело