Сегнетоэлектрики, их свойства и применение

Реферат - Экономика

Другие рефераты по предмету Экономика

я веществ с переходом второго рода значения Тс и ТK обычно совпадают. Для других веществ Тс на несколько градусов ниже ТK.

Нелинейность (Е) является важной характеристикой сегнетоэлектриков. Если создаваемая приложенным полем Е поляризация не остается пропорциональной при возрастании поля, то измерения в переменном поле будут давать различные значения проницаемости при различных амплитудах поля. Нелинейность проявляется также при измерениях в достаточно малом поле при наличии дополнительного смещающего напряжения.

Нелинейность поляризации по отношению к полю и наличие гистерезиса обусловливают зависимость диэлектрической проницаемости и емкости сегнетоэлектрического конденсатора от режима работы. Для характеристики свойств материала в различных условиях работы нелинейного элемента используют понятия статической, реверсивной, эффективной и других диэлектрических проницаемостей.

Статическая диэлектрическая проницаемость ст определяется по основной кривой поляризации сегнетоэлектрика:

ст = D/(0Е) = 1 + Р/(0Е) Р/(0Е).

Реверсивная диэлектрическая проницаемость р характеризует изменение поляризации сегнетоэлектрика в переменном электрическом поле при одновременном воздействии постоянного поля.

Эффективную диэлектрическую проницаемость эф, как и эффективную емкость конденсатора, определяют по действующему значению тока I (не синусоидального), проходящего в цепи с нелинейным элементом при заданном действующем напряжении U с угловой частотой :

эф ~ Сэф = I/(U)

Диэлектрическую проницаемость, измеряемую в очень слабых электрических полях, называют начальной.

Специфические свойства сегнетоэлектриков проявляются лишь в определенном диапазоне температур. В процессе нагревания выше некоторой температуры происходит распад доменной структуры и электрик переходит в параэлектрическое состояние. Температура Тк такого фазового перехода получила название сегнетоэлектрической точки Кюри. В точке Кюри спонтанная поляризованность исчезает, а диэлектрическая проницаемость достигает своего максимального значения.

Зависимость титаната бария от температуры. Видно, что при температуре порядка 120С имеется выраженная точка Кюри, ниже которой материал обладает сегнетоэлектрическими свойствами, хотя в нем и наблюдаются дополнительные структурные изменения (вторичные максимумы на кривых).

Переход сегнетоэлектрика в параэлектрическое состояние сопровождается резким уменьшением tg, поскольку исчезают потери на гистерезис.

Некоторые свойства керамики отличаются от свойств соответствующих монокристаллов. Это связано с хаотической ориентацией кристаллитов, пористостью материала, а также тем, что многие кристаллиты находятся в механически напряженном состоянии даже тогда, когда к материалу не приложено никакого внешнего напряжения. Изменения свойств, вызванного наличием пор, обычно учитывается просто плотностью материала. Например, если плотность кристалла титаната бария 6,0 г/см3, то плотность его керамики обычно составляет около 5,7 г/см3. Керамики обычно имеют такие же, как и у монокристаллов температуру перехода, теплоемкость и константу Кюри ( с учетом поправки на пористость ).

В керамике титаната бария каждый кристаллит имеет по отношению к своим кристаллографическим осям шесть эквивалентных возможных направлений возможных направлений спонтанной поляризации; ориентация же самих кристаллитов хаотическая. В общем случае действительно реализующиеся направления спонтанной поляризации в керамике статистически равномерно распределены по шести указанным направлениям. Но это не всегда имеет место, так как специальной обработкой можно создать можно создать преимущественное направление поляризации, например приложив к изделию на подходящей стадии его приготовления (или даже к охлажденному изделию ) постоянное электрическое поле. Такой процесс называют поляризацией керамики. При этом в каждом кристаллите становится предпочтительным то из направлений спонтанной поляризации, которое ближе остальных к направлению поля. Однако этот процесс не может привести к столь же большой поляризации образца, как в случае монокристалла. Можно показать, что максимальная возможная поляризация керамического образца составляет 84% поляризации монокристалла титаната бария. Это значение практически никогда не достигается вследствие внутренних механических напряжений и пористости керамики; обычно поляризация составляет около 55% когда поле приложено, и меньше это значения, когда поляризующее поле снято.

Значения пьезоэлектрических коэффициентов для керамики также ниже, чем для монокристалла, составляя после соответствующей поляризации около 25% значений для монокристалла.

Легко видеть, что специфические условия, существующие в керамике сильно влияют на одни свойства кристалла и не влияют на другие. Например, полная поляризация PS является средней величиной по различным кристаллитам; если кристаллиты ориентированы хаотически, то эта средняя величина обращается в ноль. Аналогичный пьезоэффект будет мал, так как поле удлиняет одни кристаллы и укорачивает другие. Но диэлектрическая проницаемость может сильно и не изменяться, так как измерительное переменное поле в течение каждого полупериода будет увеличивать поляризацию в одних кристаллах и уменьшать в других.

Свойствами керамики в определенной степени можно управлять. Желательные изменения параметров можно получать, из?/p>