Свойства оксидных покрытий, полученных с помощью дуального магнетрона

Дипломная работа - Физика

Другие дипломы по предмету Физика

»ишено этих недостатков, поскольку использующийся в нем дрейфовый ток электронов в скрещенных электрическом и магнитном полях дает возможность получать протяженные потоки достаточно плотной плазмы с контролируемыми в широком диапазоне характеристиками. [2].

Для получения оксидных покрытий используются ВЧ-распыление диэлектриков и магнетронные распылительные системы, где помимо инертного газа также используется и активный газ (кислород). Но напыление в атмосфере кислорода неэффективно, так как происходит образование оксидного слоя не только на подложке, но и на катоде, что снижает выход атомов мишени при распылении и изменяет ее эмиссионные свойства. Эти проблемы может решить дуальная магнетронная система.

Целью работы является выявление зависимостей свойств оксидных покрытий от конструктивных особенностей МРС.

Для достижения этой цели нужно решить следующие задачи:

1.Изучить технологии нанесения оксидных пленок

2.Ознакомиться с вакуумным ионно-плазменным оборудованием

3.Овладеть методикой нанесения оксидных покрытий и провести измерения их свойств.

1. Способы нанесения оксидных пленок

 

.1 ВЧ - распыление диэлектриков

 

Высокочастотное распыление значительно расширяет возможности тонкопленочной технологии, позволяя получать высококачественные пленки не только металлов, сплавов и полупроводников, но также пленки диэлектриков путем распыления мишеней из диэлектрических материалов. ВЧ - распыление диэлектрической мишени происходит благодаря возникновению на ней отрицательного (относительно плазмы) смещения. Наличие на мишени только ВЧ - составляющей не может привести к распылению, поскольку при этом возникает лишь колебательное движение ионов с очень малой амплитудой. Механизм возникновения отрицательного смещения связан с тем, что при подаче ВЧ-напряжения на помещенную в плазму мишень на ее поверхность начинают попеременно поступать электронный и ионный токи. В первый момент после подачи ВЧ-напряжения его постоянная составляющая на поверхности диэлектрической мишени равна нулю. В этом случае электронный ток в положительный полупериод ВЧ-напряжения значительно превосходит ионный ток в отрицательный период, что объясняется значительно большей подвижностью электронов по сравнению с ионами. Вследствие чего на поверхности мишени накапливается отрицательный заряд и, следовательно, растет отрицательное напряжение смещения до тех пор, пока средние значения электронного и ионного токов не сравняются.

Для эффективного распыления материала мишени необходимо, чтобы положительный заряд на ее поверхности под воздействием ионного тока не был бы чрезвычайно большим, поскольку это вызывает уменьшение отрицательного смещения, определяющее энергию ионов и, следовательно, эффективность распыления. Электронный ток на мишень компенсирует действие положительного заряда, приобретенного за счет ионного тока, восстанавливая напряжение смещения. Очевидно, что чем длительнее период ВЧ-колебаний, тем больший положительный заряд приобретает мишень и тем сильнее уменьшается отрицательное смещение. Для устранения этого явления период ВЧ-колебаний должен быть достаточно малым, поэтому на практике чаще всего используют частоту 13,56 МГц.

Критичным параметром, существенно ограничивающим частоту напряжения и рассеиваемую на ВЧ-электроде мощность, является зазор между ВЧ-электродом и заземленным экраном. С одной стороны, этот зазор должен быть, по крайней мере, в 2 раза меньше толщины ионной оболочки (темного пространства), чтобы в зазоре не возник разряд. С другой стороны, при чрезмерном уменьшении зазора растут емкостные потери, и возникает опасность пробоя (особенно при наличии у мишени острых краев и загрязнений). При давлении рабочего газа 0,66- 6,6 Па зазор между экраном и ВЧ-электродом составляет несколько миллиметров. Ширина зазора может быть увеличена, а емкостные потери уменьшены, если используется герметичная конструкция ВЧ-электрода с автономной откачкой его внутренней полости до давления 10~3 Па.

Следует отметить, что отрицательное смещение возникает не только на мишени, но также на стенках распылительной камеры и держателе подложек, причем электрическое смещение обратно пропорционально четвертой степени площади помещенного в ВЧ-плазму электрода. В диодной системе распыления держатель подложек обычно заземлен, поэтому все заземленные элементы распылительной камеры являются одним из электродов PC. Поскольку площадь заземленного электрода много больше площади мишени, смещение на подложках значительно меньше смещения на мишени. Однако в реальных конструкциях PC не все заземленные элементы одинаково влияют на смещение, поскольку они могут контактировать с плазмой, имеющей разную плотность. Чем лучше сконцентрирована плазма в пространстве между мишенью и подложкодержателем (например, с помощью магнитного поля), тем меньше влияние заземленных стенок и тем больше смещение на подложках. Поэтому при наличии магнитного поля может быть обеспечена более интенсивная бомбардировка подложек ионами.

В диодной ВЧ PC минимальный потенциал зажигания и максимальная проводимость плазмы достигаются в том случае, когда частота приложенного электрического поля равна частоте столкновений электронов с атомами рабочего газа. Исходя из этого условия, получена формула для вычисления оптимального давления рабочего газа:

опт = 6*10-5 ?0 (1) / Тe1/2

 

где

?0 (1) --средняя длина свободного пр?/p>