Свойства веществ при низких температурах. Жидкий гелий

Курсовой проект - Физика

Другие курсовые по предмету Физика

 

 

 

 

 

 

 

 

 

 

 

 

КУРСОВАЯ РАБОТА

тема: "Свойства веществ при низких температурах. Жидкий гелий"

 

Содержание

 

Введение

Глава 1. Свойства вещества при низких температурах

.1 Газы при низких температурах

.2 Жидкости при низких температурах

.3 Получение низких температур

Глава 2. Жидкий гелий

.1 Сверхтекучесть

.2 Гелий-3

Заключение

Список использованной литературы

 

Введение

 

Работы в области жидкого гелия представляют интерес в основном потому, что проводятся вблизи абсолютного нуля, т.е. при очень низких температурах. В то время как область высоких температур, связанная обычно с горением, нам хорошо известна из опыта повседневной жизни, с областью низких температур нам приходится сталкиваться гораздо меньше, и даже лабораторий, работающих с глубоким холодом, мало. Поэтому целый ряд представлений о холоде, сложившихся из повседневного опыта и не измененных сведениями, полученными в средней школе, надо несколько пересмотреть, чтобы понять значение изучения явлений при низких температурах в жидком гелии. Все вы знаете, что существует так называемая абсолютная шкала температур, по которой температура отсчитывается только вверх от абсолютного нуля. Комнатная температура по этой шкале составит около 300 К.

Дальше идут температуры более высокие, и они достигают самой высокой температуры, какую можно получить в лабораторных условиях, - это 27000 К. Создается такое представление, что от комнатной температуры до абсолютного нуля только 300 К, а там - 27000 К, так что область низких температур лежит гораздо ближе к нам, чем область высоких, например температур самых горячих звезд. Однако это представление неправильно. Как раз диапазон температур от комнатной до температуры абсолютного нуля гораздо больше, чем до более высоких температур. Наши житейские понятия о температуре не соответствуют тем понятиям, которые созданы в физике.

На самом деле диапазон явлений природы, которые можно наблюдать от комнатной температуры до предельно достижимых высоких температур, гораздо менее разнообразен по своему характеру и по интерпретации, чем те явления природы, которые мы наблюдаем при более низких температурах.

Физика низких температур - раздел физики, изучающий явления, которые наблюдаются при температурах ниже температуры перехода кислорода в жидкое состояние (?182,97? С, 90,19 К). Большинство обычных веществ с понижением температуры сначала переходит из газообразного состояния в жидкое, а затем из жидкого - в твердое. Поэтому получение, поддержание и изучение низких (криогенных) температур связано в первую очередь с ожижением газов и замораживанием жидкостей. В низкотемпературных исследованиях обычно пользуются ваннами из ожиженных газов.[6]

Первым систематически исследовать низкотемпературные проблемы и возможности ожижения газов начал в 1823 М.Фарадей. Он показал, что многие газы, например хлор, диоксид серы и аммиак, могут быть ожижены и при этом достигаются низкие температуры (до 110 С). Но многие другие газы, в частности кислород, азот, водород, углекислый газ и метан, не поддавались ожижению его методами даже при крайне высоких давлениях, за что позднее получили название постоянных газов. И только в 1877 Л.Кальете (Франция) и Р.Пикте (Швейцария) сообщили о том, что им удалось впервые ожижить один из постоянных газов - кислород.

Криогенная лаборатория, которой заведовал Камерлинг-Оннес, позднее стала выдающимся центром физики низких температур. В 1895 У.Гемпсон (Англия) и К. фон Линде (Германия) независимо друг от друга разработали новый метод ожижения воздуха, а затем более совершенные методы ожижения воздуха были найдены Ж.Клодом во Франции и К.Гейландтом в Германии. Этими работами был заложен фундамент промышленности разделения газов, в которой результаты низкотемпературных исследований нашли самое важное и самое широкое техническое применение.

Ожижение гелия с массой 4 (гелия-4) осуществил Камерлинг-Оннес в 1908 методом, почти совпадавшим с методом ожижения воздуха Линде. Этим было не только установлено существование жидкой фазы для всех газов, но и открыта новая важная область низких температур. Позднее гелий был ожижен и другими методами, в частности разработанными в 1930 Ф.Саймоном, работавшим в Германии, и в 1934 П.Л.Капицей в Кембридже (Англия). Метод Капицы усовершенствовал в 1946 С.Коллинз (США).

Гелий-3, получаемый как дочерний продукт распада радиоактивного трития, впервые удалось ожижить в 1948 в Лос-Аламосской научной лаборатории (США). Этот менее распространенный изотоп гелия дал возможность работать с жидкими ваннами, температура которых всего лишь на 0,25 К выше абсолютного нуля.

В этой работе, мы будем рассматривать свойства веществ, которыми обладают вещества при низких температурах. Особое внимание необходимо уделить жидкому гелию, который при низких температурах обладает рядом интересных свойств.[5]

Глава 1. Свойства вещества при низких температурах

 

При низких температурах, когда интенсивность тепловых движений оказывается ослабленной, должны, конечно, наблюдаться существенные изменения свойств вещества. Однако при рассмотрении этих изменений нужно, прежде всего, установить, какие именно температуры должны считаться низкими. Нетрудно видеть, что по отношению к разным веществам и для различных свойств этих веществ "низкими" должны считаться совершенно разл