Решение экологических проблем при первичной переработке нефтепродуктов
Дипломная работа - Экология
Другие дипломы по предмету Экология
?и испарений; осуществление дожига, в том числе каталитического; регулярный контроль за герметизацией аппаратуры; сокращение выбросов факельных систем - внедрение сбора факельных газов в газгольдеры переменной вместимости; внедрение методов, уменьшающих подачу продувного газа на свечи; использование прогрессивных конструкций горелок.
Для уменьшения сбросов через предохранительные клапаны на каждом аппарате следует устанавливать контрольные клапаны со сбросом в открытую систему при повышении технологического давления на 15% и аварийные клапаны со сбросом в атмосферу через сепаратор при повышении давления на 20%.
Пропуски сальниковых устройств можно устранять следующими способами: использованием для сальников колец из фторопласта, поджатых пружиной или инертным газом (азотом); уплотнением вращающихся валов с помощью магнитного поля, управляющего магнитной жидкостью; установкой двойных торцевых уплотнений; использованием гидроэжекторных циркуляционных местных отсосов; использованием вентилей с сильфонным уплотнением; переходом на бессальниковые насосы с экранированными электродвигателями.
Что касается фланцевых соединений, то следует отметить, что в мировой практике наметился переход от фланцевых соединений к сварным. С этой целью вваривают специальный участок трубопровода, который рассчитан на 20-50 разрезаний при ремонтах. Такой подход вообще исключает неорганизованные выбросы, обусловленные негерметичностью фланцевых соединений.
Основные способы уменьшения выбросов через дыхательные клапаны резервуаров: обвязка резервуаров для хранения нефтепродуктов близкого химического состава газоуровнительными линиями; оснащение резервуаров понтонами из полимерных материалов, дисками-отражателями, непримерзающими клапанами, сжиженными пробоотборниками, закрытым автоматическим дренажем; заполнение резервуаров преимущественно в ночное время (при наиболее низкой суточной температуре); перевод резервуаров из режима мерников в буферный режим эксплуатации; перевод технологических установок на жесткую схему питания (ликвидация промежуточных резервуаров); установка дополнительных воздушных конденсаторов для снижения температуры отходящих бензиновых фракций перед сливом в резервуары; окраска резервуаров теплоотражающей эмалью.
Однако в целях комплексной защиты промтерритории нефтеперерабатывающих производств от аварийной загазованности необходима разработка автоматизированной системы, реализующей функции управления устройствами защиты и сигнализации, а также функцию прогнозирования полей аварийной загазованности на территории объекта защиты и за его пределами. Наличие такой системы позволит оперативно включать устройства защиты, а также своевременно оповещать персонал предприятия и при необходимости население ближайших жилых районов.
Применение компьютерных тренажерных комплексов для снижения аварийности нефтеперерабатывающего предприятия. Как отмечалось ранее, переработка углеводородных систем относится к непрерывным (непрерывно-дискретным) технологиям, отличающимся сложной и глубокой динамикой по непрерывным параметрам, относительно небольшим числом логических элементов и, как правило, отсутствием быстро (в течение секунд) развивающихся процессов. Время многих процессов переработки углеводородных систем определяется медленными стадиями диффузионной кинетики физико-химических процессов. Это определяет, с одной стороны, сложность построения адекватных динамических моделей, с другой - возможность управления процессами на уровне знаний. Последнее обстоятельство отличает рассматриваемый класс технологических процессов от объектов в атомной энергетике, где управление осуществляется на уровне навыков или правил при жестком дефиците времени на восприятие, анализ и коррекцию моделируемой ситуации. Бесспорно, что объекты нефтехимпереработки характеризуются высокими материальными потерями от аварий и некачественного управления. Поэтому важным фактором предотвращения аварийных ситуаций является подготовка персонала на компьютерных тренажерных комплексах (КТК), моделирующих технологические процессы конкретных установок.
В середине 90-х годов были предприняты значительные усилия по разработке отечественной современной тренажерной платформы с использованием персональных ЭВМ нового поколения. Новая платформа реализована на мощных IBM PC, компьютерах класса Pentium и оснащена многозадачной операционной системой Windows NT с сетевой архитектурой клиент / сервер. В новой тренажерной платформе существенно расширены вычислительные возможности: модель, содержащая две-три тысячи дифференциальных и одну тысячу алгебраических уравнений, разрешается с быстродействием до 0,1 с. Эти параметры обеспечивают моделирование крупных технологических объектов типа установки АВТ (блок обессоливания, атмосферный и вакуумный блок, блок вторичной перегонки, энергетические утилиты) или установки каталитического риформинга с непрерывно восстанавливаемым катализатором (каталитические реакторы, печи, транспорт катализатора). Точность операторского интерфейса в КТК-М создает для обучаемого иллюзию реальной управляющей среды. Качественно улучшены характеристики инструкторской станции за счет усиления традиционных и введения новых функций (мониторинг переменных процесса, просмотр исторических трендов, создание iенариев обучения, изменение скорости моделируемого процесса, повторный запуск модели