Ассиметричное шифрование на базе эллиптических кривых

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



Введение

В последнее время все больше и больше внедряются в нашу повседневную жизнь информационные технологии, пытаясь захватить в ней все: от важнейших государственных проектов до решения обычных бытовых проблем. Вместе с огромной пользой и, казалось бы, неограниченными возможностями новые технологии приносят и новые проблемы. Одной из них является проблема защиты информации от несанкционированного посягательства теми, кто доступа к этой информации иметь не должен. В связи с этим почти одновременно с развитием информационных и компьютерных технологий начали развиваться и технологии защиты информации, развитие которых с некоторой точки зрения гораздо более критично, чем развитие непосредственно информационных технологий. Ведь с совершенствованием систем защиты, совершенствуются и методы взлома, обхода этих защит, что требует постоянного пересмотра и увеличения надежности защиты информации.

На сегодняшний день большинство национальных организаций приняли стандарты цифровой подписи, а ряд западных регламентирующих институтов увязали эти стандарты с использованием эллиптических кривых.

Способов защиты информации существует очень много, но каждый из них всегда можно отнести к одному из двух видов: физическое сокрытие информации от противника и шифрование информации. Зашифрованную информацию можно свободно распространять по открытым каналам связи без боязни ее раскрытия и нелегального использования. Хотя, конечно же, такая защита не абсолютно надежна, и каждый из способов шифрования характеризуется своей стойкостью, т.е. способностью противостоять криптографическим атакам.

Целью данного диплома является реализация трех лабораторных работ, посвященных:

нахождению обратного элемента с помощью расширенного алгоритма Евклида;

алгоритму формированию конечного поля Галуа GF(p) и подсчету количества точек эллиптической кривой n=#Ep;

алгоритму ассиметричного шифрования на базе эллиптических кривых ECES.

Для вычисления наибольшего общего делителя d и одновременно чисел u и v используется так называемый расширенный алгоритм Евклида. В обычном алгоритме Евклида пара чисел (a,b) в цикле заменяется на пару (b,r), где r - остаток от деления a на b, при этом наибольший общий делитель у обеих пар одинаковый. Начальные значения переменных a и b равны m и n соответственно. Алгоритм заканчивается, когда b становится равным нулю, при этом a будет содержать наибольший общий делитель.

Идея расширенного алгоритма Евклида заключается в том, что на любом шаге алгоритма хранятся коэффициенты, выражающие текущие числа a и b через исходные числа m и n. При замене пары (a,b) на пару (b,r) эти коэффициенты перевычисляются.

Конечное поле или поле Галуа - поле, состоящее из конечного числа элементов. Конечное поле обычно обозначается GF(р), где р - число элементов поля.

Эллиптические кривые являются одним из основных объектов изучения в современной теории чисел и криптографии. Например, они были использованы Эндрю Уайлзом (совместно Ричардом Тейлором) в доказательстве Великой теоремы Ферма. Эллиптическая криптография образует самостоятельный раздел криптографии, посвященный изучению криптосистем на базе эллиптических кривых. В частности, на эллиптических кривых основан российский стандарт цифровой подписи ГОСТ Р 34.10-2001. Эллиптические кривые также применяются в некоторых алгоритмах факторизации (например, Алгоритм Ленстры) и тестирования простоты чисел.

Эллиптическая криптография - раздел криптографии, который изучает асимметричные криптосистемы, основанные на эллиптических кривых над конечными полями. Основное преимущество эллиптической криптографии заключается в том, что на сегодняшний день не известно субэкспоненциальных алгоритмов для решения задачи дискретного логарифмирования в группах точек эллиптических кривых.

Асимметричная криптография основана на сложности решения некоторых математических задач. Ранние криптосистемы с открытым ключом, такие как алгоритм RSA, безопасны благодаря тому, что сложно разложить составное число на простые множители. При использовании алгоритмов на эллиптических кривых полагается, что не существует субэкспоненциальных алгоритмов для решения задачи дискретного логарифмирования в группах их точек. При этом порядок группы точек эллиптической кривой определяет сложность задачи. Считается, что для достижения такого же уровня безопасности как и в RSA требуются группы меньших порядков, что уменьшает затраты на хранение и передачу информации. Например, на конференции RSA 2005 Агентство национальной безопасности объявила о создании Suite B, в котором используются исключительно алгоритмы эллиптической криптографии, причём для защиты информации классифицируемой до Top Secret используются всего лишь 384-битные ключи.

Большинство криптосистем современной криптографии естественным образом можно "переложить" на эллиптические кривые. Основная идея, заключается в том, что известный алгоритм, используемый для конкретных конечных групп переписывается для использования групп рациональных точек эллиптических кривых.

Ассиметричное шифрование(к с открытым ключом) - асимметричная схема, в которой применяются пары ключей: открытый ключ(public key), который зашифровывает данные, и соответствующий ему закрытый ключ(private key), который их расшифровывает. Вы распространяете свой открытый ключ по всему свету, в то время как закрытый держите в тайне. Любой человек