Реализация автономных адаптивных систем управления на базе нейронных сетей
Информация - Компьютеры, программирование
Другие материалы по предмету Компьютеры, программирование
/p>
S0=initial, a0=0000, a1=0111, a2=1011, a3=1101, a4=1110
Рис. 5.7.1.
[Environment]
initial(output=1111)
s1(output=0111)
s2(output=1011)
s3(output=1101)
s4(output=1110)
[Finite State Automate]
set for word -1 synonym any
(initial,0)->s1
(initial,1)->s1
(s1,0)->s2
(s1,1)->s3
(s2,0)->s4
(s2,1)->s3
(s3,0)->s2
(s3,1)->s4
(s4,0)->s4
(s4,1)->s1
Пример 5.7.1. Спецификация модели среды.
5.8. Пример работы программы.
Результаты работы программы удобно представить временной диаграммой, где строка отображает состояние системы в момент времени ti. Будем обозначать вертикальным штрихом единичный сигнал на выходе нейрона (N) или датчика (I).
Данный пример демонстрирует способность УС находить закономерности управления и использовать их для улучшения своего состояния. Исходными данными для примера являлись спецификация сети - пример 5.3.1, спецификация БОС - пример 5.6.1, спецификация модели среды - пример 5.7.1.
Output signals graph
I1 I2 I3 I4 N2 N3 N4 N1 DecisionMaker Or Evaluator
t = 0 * * * * 1 1 0
t = 1 | | | 1 1 15
t = 2 | | | 0 0 5
t = 3 | | | 1 1 10
t = 4 | | | 1 1 5
t = 5 | | | 1 1 20
t = 6 | | | 1 1 15
t = 7 | | | 0 1 5
t = 8 | | | 0 1 20
t = 9 | | | 0 1 15
t = 10 | | | | 0 0 5
t = 11 | | | 0 1 10
t = 12 | | | | 0 1 5
t = 13 | | | 1 1 20
t = 14 | | | | 1 1 15
t = 15 | | | | 1 1 5
t = 16 | | | | 0 1 20
t = 17 | | | | 1 1 15
t = 18 | | | | 1 1 5
t = 19 | | | | 0 0 20
t = 20 | | | | 0 0 20
t = 21 | | | | 0 0 20
t = 22 | | | | 0 1 20
t = 23 | | | | 1 1 15
t = 24 | | | | 1 1 5
t = 25 | | | | 0 0 20
t = 26 | | | | 0 0 20
t = 27 | | | | 0 0 20
t = 28 | | | | 0 1 20
t = 29 | | | | 1 1 15
t = 30 | | | | 1 1 5
t = 31 | | | | 0 0 20
t = 32 | | | | 0 1 20
t = 33 | | | | 1 1 15
t = 34 | | | | 1 1 5
t = 35 | | | | 0 0 20
t = 36 | | | | 0 0 20
t = 37 | | | | 0 0 20
t = 38 | | | | 0 1 20
t = 39 | | | | 1 1 15
t = 40 | | | | 1 1 5
...
Calculation time statistics
Number of net nodes = 11
Time interval length = 600
Calculation time = 1.582 secs
Mean time of calculating one node output = 0.24 ms
Knowledge base statistics
N3 -> N4 with action 1 with probability 141 / 141 = 1
N4 -> N1 with action 0 with probability 141 / 304 = 0.464
N1 -> N3 with action 1 with probability 141 / 141 = 1
Пример 5.8.1. Результат работы программы.
На диаграмме выведены выходные сигналы входных элементов (датчиков) I1, I2, I3, I4, нейронов N1, N2, N3, N4, БПР (DecisionMaker), БОС (Evaluator) и внутреннего элемента среды (Or), на который подаются сигналы от БПР и стохастического источника, а выход соединен с входом модели КА Мура. Множество возможных воздействий УС на среду состоит из двух элементов, обозначенных как 0 и 1. Из примеров 5.6.1 и 5.7.1 видно, что состоянием модели среды с наивысшей оценкой является s4. Из диаграммы 5.8.1 можно сделать вывод, что УС нашла закономерности управления, достаточные для удержания ОУ в состоянии s4 (t > 18), но в результате действия стохастического источника после некоторого времени пребывания в s4 ОУ перескакивает из этого состояния в s1, откуда УС снова переводит его в состояние s4.
Работу системы проиллюстрируем на рис. 5.8.1. В систему входят модель среды, состоящей из КА и Истока, и УС, состоящей из блоков ФРО, БОС, БЗ, БПР.
Рис. 5.8.1.
В конце примера выведена информация о состоянии БЗ, содержащей знания, эмпирически найденные УС к моменту окончания работы программы.
5.9. Перспективы развития СПИНС.
Кроме намеченных в разделе 5.1 направлений развития системы, а именно создание конструктора сетей с графическим интерфейсом, расширение языка спецификации сетей и др., необходима доработка и разработка нейросетевых реализаций БЗ и БПР, разработка методов создания реальных приложений по полученным с помощью СПИНС спецификациям сетей. Привлекательным является также создание трехмерного визуализатора БЗ. Визуализация БЗ основана на введении топологии в конечном пространстве образов базы знаний (определение 4.5) посредством отображения F и Y в R, таким образом, области в B отобразятся в области в .
Если образ , сформирован, то он отображается точкой цвета, соответствующего сформировавшейся оценке образа . При этом в пространстве обозначатся некоторые цветные области (рис. 5.9.1), иллюстрирующие закон управления.
Рис. 5.9.1.
Заключение.
Основные результаты дипломной работы состоят в следующем:
- Разработана концепция и реализовано ядро программной системы СПИНС для построения и исследования нейросетевой реализации прототипов управляющих систем, построенных по методу автономного адаптивного управления, созданного в отделе имитационных систем Института Системного Программирования РАН.
- Доработаны аппарат формирования и распознавания образов, алгоритм заполнения базы знаний управляющей системы и алгоритм принятия решений.
- Данные алгоритмы протестированы с помощь