Распределение Fe2+/Mg отношения в системе расплав - шпинель - оливин
Курсовой проект - Геодезия и Геология
Другие курсовые по предмету Геодезия и Геология
литах кимберлитов можно истолковать как факт, свидетельствующий в пользу такого вывода: по-видимому, деформации являются и одним из условий роста кимберлитовых алмазов.
Твердофазный рост алмаза возможен и в коровых условиях. Приуроченность микрокристаллов алмаза к зонам максимальных дислокаций на месторождении Кумды-Коль (Казахстан), соотнесенная с результатами экспериментальных исследований [12,24], позволяет объяснить их образование из графита вследствие сдвиговых деформаций при палеоземлетрясениях. Если, вслед за [24,49,71], предположить взрывной характер формирования алмазов, то сами очаговые области землетрясений можно интерпретировать как зоны взрывных процессов. Кроме того, очаговую зону землетрясения, вероятно, можно уподобить группе стоячих волн. Возможность роста кристаллов алмаза в твердой среде при сдвиговых деформациях позволила наметить ряд геологических (гранито-гнейсовые купола - разломные зоны в них - участки максимальных деформаций в этих зонах) и минералогических (наличие коэсита, графита, высококальциевого граната) критериев для поиска подобных месторождений в различных регионах: Алданский щит, западный гнейсовый регион Норвегии, Камчатский Срединный массив, вероятно, в целом области щитов и т.д.
Параметры перехода в коровых условиях графита в алмаз при сдвиговых деформациях, соответствующих очаговым зонам землетрясений, вероятно, можно исследовать экспериментально. Строение кристаллов алмаза и их структурные особенности, возможно, связаны с характером сдвиговых деформаций и могут быть полезными для оценки этих деформаций в очаговых зонах землетрясений. Для поиска микрокристаллических новообразований коэсита и алмаза, а также выявление их морфологических и структурных особенностей, полезными могут быть исследования глинок трения и зеркал скольжения в разломных зонах, выходящих на дневную поверхность. На детали перехода графита в алмаз могут пролить свет структурные и иные исследования зоны их срастания, являющейся аллотропным переходом. По аналогии с гетеропереходами, для всех типов алмазов, в первую очередь полупроводниковых, эта зона может обладать рядом интересных и полезных свойств.
Список литературы
1. Амосов А.В., Петровский Г.Т. Дефекты типа "кислородная вакансия" в кварцевых стеклах // Докл. АН СССР. 1983. Т. 268. N1. С. 66-68.
2. Анфилогов В.Н.. Анфилогова Г.И.. Бобылев И.Б., Зюзева Н.А. Формы нахождения фтора и хлора в силикатных расплавах // Геохимия. 1984. N5. С. 751-755.
3. Арискин А.А., Николаев Г.С. Распределение Fe3+ и Fe2+ между хромшпинелидом и базальтовым расплавом в зависимости от состава, температуры и летучести кислорода // Геохимия. 1995. N8. С. 1131-1139.
4. Базышев Б.А., Силантьев С.А. Геодинамическая интерпретация субсолидусной перекристаллизации мантийных шпинелевых перидотитов: срединно-океанические хребты // Петрология. 2000. Т. 8. N3. С. 227-240.
5. Байков А.И., Аникин А.П.. Стефанов Ю.М., Дунин-Барковский Р.Л. Проблема алмазоностности Камчатки // Петрология и металлогения базит-гииербазитовых комплексов Камчатки. Петропавловск-Камчатский, 2000. С.91-94.
6. Беляев О.А., Петров В.П., Реженова С.А. Неоднородности состава граната из гнейсов в зоне сдвиговых деформаций (Кольский полуостров) // Записки ВМО. 2000. N1. С. 82-91.
7. Бирюков В.М., Бирюков Е.В., Косыгин Ю.А.,Чуйко В.С. Высокобарический метаморфизм в габбро-анортозитовых комплексах (на примере Каларского массива) // Докл. АН СССР. 1991. Т. 321. N2. С. 362-367.
8. Бирюков В.М., Косыгин Ю.А., Потоцкий Ю.П. Высокобарические ассоциации Ларбинского блока (Алданский щит) // Докл. РАН. 1993. Т. 328. N3. С. 358-363.
9. Бобылев И.Б., Анфилогов В.Н. Связь петрохимических констант силикатов с полимерными равновесиями в расплавах // Геохимия. 1980. N11. С. 1756-1760.
10. Борисов А.А., Шапкин А.И. Новое эмпирическое уравнение зависимости отношения Fe3+/Fe2+ в природных расплавах от их состава, летучести кислорода и температуры // Геохимия. 1989. N6. С. 892-898.
11. Велинский В.В. Альпинотипные гипербазиты переходных зон океан-континент. Новосибирск: Наука, 1979. 263 с.
12. Верещагин Л.Ф., Зубова Е. В. Измерение напряжения сдвига ряда веществ при давлениях до 1000000 атм. // Докл. АН СССР. 1960. Т. 134. .N4. С. 787-788.
13. Верещагин Л.Ф., Калашников Я.А., Фекличев Е.М., Никольская И.В., Тихомирова Л.М. К вопросу о механизме полиморфного превращения графита а алмаз // Докл. АН СССР. 1965. Т. 162. N5. С. 1027-1029.
14. Виноградов В.И., Шеймович В.С., Головин Д.И. Опыт изотопного датирования метаморфических и магматических пород Камчатки // Магматизм и метаморфизм Северо-Востока Азии. Магадан, 2000. С. 32-36.
15. Волынец О.Н., Аношин Г.Н., Пузанков Ю.М., Перепелов А.Б., Антипин В.С. Калиевые базальтоиды Западной Камчатки, проявление пород лампроитовой серии в островодужной системе // Геология и геофизика. 1987. N11. С. 41-49.
16. Воробьев Е.И. О механизме алмазообразования в кумдыкольском месторождении Кокчетавского массива (Северный Казахстан) // Докл. РАН. 2000. Т. 371. N3. С. 341-343.
17. Гаранин В.К. Гусеев Е.В., Дергачев Д.В., Кудрявцева Г.П., Орлов Р.Ю. Кристаллы алмаза в гранатах из слабо разгнейсованных гранитов // Докл. АН СССР. 1988. Т. 298. N1. С. 190-194.
18. Гзовский М.В. Основы тектонофизики. М.: Наука, 1975. 535 с.
19. Добрецов Н.Л., Тениссен К., Смирнова Л.В. Структурная и геодинамическая эволюция алмазсодержащих метаморфических пород Кокчетавского массива (Казахстан) // Геология и геофизика. 1998. Т. 39. N12. С. 1645-1666.
20. Доусон Дж. Кимберлиты и ксенолиты в них. М.: Мир, 1983. 300 с.
21. Екимова Т.Е., Лаврова Л.Д., Петрова М.А. Включения алмазов в породообразующих минералах метаморфических пород // Докл. РАН. 1992. Т. 322. N2. С. 366