Разработка эффективной системы энергоснабжения на основе ВИЭ

Информация - Экономика

Другие материалы по предмету Экономика

профиль "Эсперо", и имеются справочные данные об относительных моментах ветроколес с таким профилем лопастей /43/. Под относительным моментом подразумевается отношение момента ветроколеса с конкретным количеством лопастей к моменту условного ветроколеса с бесконечным количеством лопастей, при котором крутящий момент принят равным единице /43/. С учетом этого, функция оптимизации будет иметь вид:

(3.2.2.)

где: Мг,Мв - относительные моменты, о.е.

Так как момент зависит от скорости вращения ветроколеса, которая в свою очередь зависит от скорости ветра, то вводится понятие "модуль ветроколеса" /18,43/, который равен:

(3.2.3.)

где: Z - модуль ветроколеса,о.е.;

w - угловая скорость вращения ветроколеса, с-1;

R- радиус ветроколеса, м;

- скорость ветра, м/с.

В таблице 3.2.2. приведены относительные моменты на валу генераторов от ветроколес, работающих в номинальных режимах.

Таблица 3.2.1.

Относительные моменты и модули ветроколес с лопастями "Эсперо".

ПараметрыЗначение параметров при м2346Vв, м/с6,56,56,56,5Мопт, о.е.0,090,120,140,19Zном, о.е.5,04,03,52,5nВН, об/мин310250220155Ммах, о.е.0,1000,1350,1500,195Zмах, о.е.4,403,303,002,30nВ МАХ,об/мин275200185140, о.е.1,111,131,071,03, о.е.1,141,211,161,09

Таблица 3.2.2.

Моменты на валу генераторов от ветроколес

Число

лопастейМомент на валу генератора(о.е.*10-2) при n0, об/мин30001500100075060050037530025020,751,52,33,03,84,56,07,59,030,801,62,43,24,04,86,48,09,640,821,62,43,24,14,96,58,29,860,791,62,43,24,04,86,37,99,5

Как видно из таблицы 3.2.2., наиболее предпочтительными для всех генераторов являются ветроколеса с числом лопастей от 3 до 6. Но так как ветроколесо с тремя лопастями обладает (см. табл. 3.2.1.) наибольшей перегрузочной способностью (Ммах/Мопт) и наибольшим диапазоном рабочих скоростей (Zном/Zмах), то окончательно принимается ветроколесо с тремя лопастями. Так как номинальные обороты ветроколеса небольшие, то целесообразно применять генераторы с большим числом пар полюсов р > 3.

Диаметр ветроколеса связан с мощностью ветроэнергетической установки следующей формулой /18,43,45/:

, (3.2.4.)

где: hв, hп - к.п.д. ветроколеса и передачи;

V/ - математическое ожидание скорости ветра в рабочем диапазоне, м/сек.

r - плотность воздуха кг/м3, r = 1,36 кг/м3 / 21 /.

Для трехлопастного ветроколеса hв = 0,45 /43/. К.П.Д. передачи принимаем ?п = 0,98 /21/. Расчет ведем для генератора с nг = 500 об/мин. Рабочий диапазон скоростей ветра 4...16 м/с /38/.

Для этого диапазона Vв = 6,5 м/с, iп = 1,5.

(м)

 

Принимаем D = 4,0 м.

Внешний вид предлагаемой В-установки показан на листе 6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. КОНСТРУКЦИЯ СОЛНЕЧНОЙ ЭНЕРГОУСТАНОВКИ

 

Как отмечалось ранее (см.п. 1.1.) для маломощных солнечных энергоустановок наиболее эффективным является фиксированный солнечный коллектор. Так как фиксированный коллектор не является следящим устройством, то его ориентация играет особо важную роль в эффективности всей установки. Очевидно солнечный коллектор должен быть ориентирован таким образом, чтобы за все время его использования он получал наибольшую суммарную энергию солнца.

Плотность солнечного излучения, поступающего на солнечный коллектор, определяется по формуле /18,37/:

, (4.1.1.)

где: Sк - суммарная за год плотность солнечного излучения на коллектор с параметрами ориентации и , Вт/м2;

Sпi - плотность солнечного излучения на перпендикулярную к нему площадку за i-тый промежуток времени, Вт/м2;

i - средний угол солнца над горизонтом в i-тый период времени, град;

сi - средний азимут солнца за i-тый период времени, град.

Учитывая, что метеорологические станции имеют наиболее полную информацию о плотности солнечного излучения на горизонтальную поверхность, выразим Sп через Sг /37/:

, (4.1.2.)

Тогда (4.1.1.) будет иметь вид:

, (4.1.3.)

Как видно из (4.1.3.) суммарная годовая плотность солнечного излучения на фиксированный коллектор зависит от двух параметров g и b.

Оптимальное значение угла g определяется из равенства /32/:

, (4.1.4.)

Проведем вычисления:

,(4.1.5.)

Воспользуемся тригонометрическим тождеством :

, (4.1.6.)

Обозначив, разделив (4.1.5.) на и с учетом (4.1.6.), получим:

, (4.1.7.)

 

Откуда определяем:

, (4.1.8.)

Или проведя обратную подстановку , окончательно получаем:

, (4.1.9.)

 

Как видно из (4.1.9.), оптимальный азимутный угол ориентации солнечного коллектора не зависит от угла его наклона к горизонту.

, (4.1.10.)

Оптимальный угол определяется при условии = опт из условия:

, (4.1.11.)

Выполняем вычисления:

, (4.1.12.)

В результате расчетов получены следующие параметры ориентации солнечного коллектора:

- азимутный угол должен состовлять -12,5 град., т.е. солнечный коллектор должен быть повернут на 12,5 град. на юго-восток;

- угол наклона к горизонтальной поверхности долж?/p>