Разработка САПР трубчатых реакторов для производства малеинового ангидрида
Информация - Компьютеры, программирование
Другие материалы по предмету Компьютеры, программирование
?щих программ:
- программа для решения математической модели;
- программа для решения задачи оптимизации.
Данные программы написаны на объектно ориентированном языке программирования С++. При работе данная подсистема применяет диалог "вопрос-ответ" для утверждения полученного результата у пользователя и системы "заполнения бланков" и "меню" для коррекции исходных данных.
В данной подсистеме для решения поставленных задач применяются следующие методы решения:
метод конечных разностей, который используется для решения математической модели ;
метод Ньютона для систем нелинейных дифференциальных уравнений, который используется для решения задачи оптимального проектирования.
4ОПИСАНИЕ МЕТОДИКИ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ
Функциональная схема САПР представлена в приложении В.
На начальном этапе пользователю предлагается ввести исходные данные с помощью диалога типа "заполнения бланков" (для ввода необходимых данных) и диалога типа меню (для выбора необходимой точности). Эти данные проверяются на корректность. Затем по ним ищется готовый проект, если проект найден, то выводится вся графическая и текстовая документация согласно введенным данным.
В случае, если нет готового проекта для введенных данных, то выполняется поиск и расчет необходимой информации. Этот этап подразделяется на следующие этапы:
1) выбор теплоносителя (на этом этапе подбирается оптимальный теплоноситель);
2) выбор катализатора (здесь подбирается оптимальный катализатор);
3) решение математической модели статики и задачи оптимального проектирования;
4) анализ результатов оптимизации. Если данные приемлемы, то происходит переход на пункт 5, иначе данные корректируются и происходит переход на пункт 1;
5) подбор фильтра (здесь подбирается оптимальный фильтр);
6) подбор насоса (здесь подбирается оптимальный насос);
7) компоновка результатов проектирования;
8) сохранение готового проекта в базе данных готовых проектов;
9) формирование документации;
10) вывод результатов на печатающее устройство.
5 ОБЕСПЕЧЕНИЯ
5.1 Математическое обеспечение
Математическое обеспечение САПР - объединяет в себе математические модели проектируемых объектов, методы и алгоритмы выполнения проектных процедур. Для разработки многотоннажного производства малеинового ангидрида каталитическим окислением бензола целесообразно использовать методы математического моделирования /5,6/.
Математическая модель процесса позволяет определить оптимальные конструктивные и режимные параметры и разработать высокоэффективный промышленный реактор. Кинетическую модель окисления бензола в малеиновый ангидрид можно представить схемой, представленной на рисунке 2:
где Б бензол; М малеинивый ангидрид; Q продукты сгорания: 1, 2 и 3 маршруты образования продуктов.
Рисунок 2 Схема кинетического окисления бензола
Скорости образования продуктов определяются из выраженнй:
, (5.1)
где w1,w2 и w3 скорости соответствующих стадий.
При выводе кинетических уравнений принимали дискретную неоднородность поверхности катализатора /7/. Последнюю можно представить состоящей из трех типов активных центров, различающихся энергией связи кислород катализатор.
В процессе катализа происходят обратимая адсорбция окисляемого соединения на окисленной поверхности, взаимодействие адсорбированной молекулы с поверхностным кислородом и десорбция продукта. Протекание реакции тормозится органическими компонентами газовой фазы вследствие их обратимой адсорбции. Кислородные вакансии быстро заполняются кислородом из газовой фазы, вследствие этого наблюдается нулевой порядок по кислороду. В соответствии с указанными представлениями на основе теории стационарных реакций /8/ были выведены уравнения для расчета скоростей по маршрутам:
, (5.2)
Di=CQ,СM,СБ, (5.3)
где i номер маршрута;
CБ - концентрация соответственно бензола;
СМ концентрация малеинового ангидрида;
CQ концентрация продуктов сгорания;
Ai,Bi,Di и Fi константы скоростей i-гo маршрута.
Экспериментальные данные по скоростям образования продуктов были получены на лабораторном безградиентном мембранном реакторе.
Реактор для получения малеинового ангидрида из бензола представляет собой вертикальный трубчатый аппарат с неподвижным слоем катализатора. Объем тепла осуществляется расплавом солей, циркулирующим в межтрубном пространстве. При математическом моделировании нужно установить влияние изменения режимных и конструктивных параметров процесса на эффективность работы реактора. Кроме того, необходимо определить структуру математической модели, наиболее точно соответствующую экспериментальным данным, и найти математическую модель (описывающую с достаточной точностью процесс в реакторе), которую можно применить при оптимизации процесса.
На рисунке 3 изображена структурная схема объекта.
C6H6 + O2 C4H2O3 + CO2 + H2O
Рисунок 3 - Структурная схема объекта.
Объект представляет собой черный ящик, на вход которого подается бензоловоздушная смесь, а на выходе - малеиновый ангидрид в смеси с водой и углекислым газом.
5.1.1 Принятие допущений
- В связи с тем, что длина реактора значительно превышает его диаметр, будем использовать гидродинамическую модель “Идеальное выте