Разработка САПР трубчатых реакторов для производства малеинового ангидрида

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

?щих программ:

- программа для решения математической модели;

- программа для решения задачи оптимизации.

Данные программы написаны на объектно ориентированном языке программирования С++. При работе данная подсистема применяет диалог "вопрос-ответ" для утверждения полученного результата у пользователя и системы "заполнения бланков" и "меню" для коррекции исходных данных.

В данной подсистеме для решения поставленных задач применяются следующие методы решения:

метод конечных разностей, который используется для решения математической модели ;

метод Ньютона для систем нелинейных дифференциальных уравнений, который используется для решения задачи оптимального проектирования.

4ОПИСАНИЕ МЕТОДИКИ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ

Функциональная схема САПР представлена в приложении В.

На начальном этапе пользователю предлагается ввести исходные данные с помощью диалога типа "заполнения бланков" (для ввода необходимых данных) и диалога типа меню (для выбора необходимой точности). Эти данные проверяются на корректность. Затем по ним ищется готовый проект, если проект найден, то выводится вся графическая и текстовая документация согласно введенным данным.

В случае, если нет готового проекта для введенных данных, то выполняется поиск и расчет необходимой информации. Этот этап подразделяется на следующие этапы:

1) выбор теплоносителя (на этом этапе подбирается оптимальный теплоноситель);

2) выбор катализатора (здесь подбирается оптимальный катализатор);

3) решение математической модели статики и задачи оптимального проектирования;

4) анализ результатов оптимизации. Если данные приемлемы, то происходит переход на пункт 5, иначе данные корректируются и происходит переход на пункт 1;

5) подбор фильтра (здесь подбирается оптимальный фильтр);

6) подбор насоса (здесь подбирается оптимальный насос);

7) компоновка результатов проектирования;

8) сохранение готового проекта в базе данных готовых проектов;

9) формирование документации;

10) вывод результатов на печатающее устройство.

5 ОБЕСПЕЧЕНИЯ

5.1 Математическое обеспечение

Математическое обеспечение САПР - объединяет в себе математические модели проектируемых объектов, методы и алгоритмы выполнения проектных процедур. Для разработки многотоннажного производства малеинового ангидрида каталитическим окислением бензола целесообразно использовать методы математического моделирования /5,6/.

Математическая модель процесса позволяет определить оптимальные конструктивные и режимные параметры и разработать высокоэффективный промышленный реактор. Кинетическую модель окисления бензола в малеиновый ангидрид можно представить схемой, представленной на рисунке 2:

 

 

 

 

 

 

где Б бензол; М малеинивый ангидрид; Q продукты сгорания: 1, 2 и 3 маршруты образования продуктов.

Рисунок 2 Схема кинетического окисления бензола

Скорости образования продуктов определяются из выраженнй:

, (5.1)

где w1,w2 и w3 скорости соответствующих стадий.

При выводе кинетических уравнений принимали дискретную неоднородность поверхности катализатора /7/. Последнюю можно представить состоящей из трех типов активных центров, различающихся энергией связи кислород катализатор.

В процессе катализа происходят обратимая адсорбция окисляемого соединения на окисленной поверхности, взаимодействие адсорбированной молекулы с поверхностным кислородом и десорбция продукта. Протекание реакции тормозится органическими компонентами газовой фазы вследствие их обратимой адсорбции. Кислородные вакансии быстро заполняются кислородом из газовой фазы, вследствие этого наблюдается нулевой порядок по кислороду. В соответствии с указанными представлениями на основе теории стационарных реакций /8/ были выведены уравнения для расчета скоростей по маршрутам:

, (5.2)

Di=CQ,СM,СБ, (5.3)

где i номер маршрута;

CБ - концентрация соответственно бензола;

СМ концентрация малеинового ангидрида;

CQ концентрация продуктов сгорания;

Ai,Bi,Di и Fi константы скоростей i-гo маршрута.

Экспериментальные данные по скоростям образования продуктов были получены на лабораторном безградиентном мембранном реакторе.

Реактор для получения малеинового ангидрида из бензола представляет собой вертикальный трубчатый аппарат с неподвижным слоем катализатора. Объем тепла осуществляется расплавом солей, циркулирующим в межтрубном пространстве. При математическом моделировании нужно установить влияние изменения режимных и конструктивных параметров процесса на эффективность работы реактора. Кроме того, необходимо определить структуру математической модели, наиболее точно соответствующую экспериментальным данным, и найти математическую модель (описывающую с достаточной точностью процесс в реакторе), которую можно применить при оптимизации процесса.

На рисунке 3 изображена структурная схема объекта.

 

C6H6 + O2 C4H2O3 + CO2 + H2O

 

Рисунок 3 - Структурная схема объекта.

Объект представляет собой черный ящик, на вход которого подается бензоловоздушная смесь, а на выходе - малеиновый ангидрид в смеси с водой и углекислым газом.

5.1.1 Принятие допущений

- В связи с тем, что длина реактора значительно превышает его диаметр, будем использовать гидродинамическую модель “Идеальное выте