Разработка программно-математического обеспечения корреляционного совмещения изображений с использованием быстрого преобразования Фурье

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



Требования по исключению или ограничению уровня аномальных ошибок составляют очень важную часть требований к алгоритмам обнаружения, так как ошибочное целеуказание непосредственно приводит к формированию неэффективного управления.

Вычислительная реализуемость.

Несмотря на отмеченный ранее колоссальный прогресс вычислительной техники и создание обширной специализированной процессорной базы для обработки изображений, для основной массы бортовых приложений реального времени характеристики вычислителей и их свойства всё ещё далеки от желаемых. Даже в случае реализации простейших алгоритмов оконной фильтрации изображения с минимальной апертурой 33 элемента объём вычислений составляет десятки операций на точку изображения. При обработке более высокого уровня необходимый объём вычислений колеблется в пределах от сотен до тысяч операций на пиксел.

Если размер анализируемого изображения составляет порядка 10001000 элементов, что не является чем-либо необычным для современных видео датчиков (можно вспомнить, что бытовые цифровые фотоаппараты давно превзошли отметку 5 Мпикс. в ПЗС-матрице (специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС - приборов с зарядовой связью)), мы получим оценку количества потребных вычислений порядка нескольких гигабайтов операций на кадр.

Между тем, для приложений реального времени необходимо выполнять эти вычисления в темпе кадровой развертки (не менее 25 кадров в секунду), что приводит к оценке быстродействия около 50 Гфлопс (флопс - внесистемная единица, используемая для измерения производительности компьютеров, показывающая, сколько операций с плавающей точкой в секунду выполняет данная вычислительная система). Сами по себе эти оценки сегодня не являются запредельными для ЭВМ последнего поколения, однако следует учесть, что в случае создания систем управления перспективных ЛА массогабаритные характеристики конструируемых вычислительных устройств должны быть весьма ограничены. Таким образом, вычислительная реализуемость алгоритмов по-прежнему относится к числу наиболее важных факторов, учитываемых при их разработке.

Исходя из названных выше требованиям к алгоритмам сравнения изображений и накладываемых на них ограничений из-за не идеальности условий полета и возникающих помех, одной из важнейших задач, решаемых КЭНС, становится приведение ТИ и ЭИ к максимально сравнимому виду. Дополнительная обработка изображений перед их сравнением позволяет существенно снизить вероятность возникновения ошибок в определении местонахождения как самого летательного аппарата, так и объектов на iене наблюдения.

3. Преобразование Фурье. Фурье анализ

Фурье анализ на сегодняшний день, без сомнения самый распространенный инструмент анализа, который применяется во всех отраслях науки и техники. Однако до появления компьютеров дискретное преобразование Фурье (ДПФ) использовалось редко, поскольку вычисление ДПФ 32 отсчетов требует 1024 операции комплексного умножения и сложения, что вручную считать довольно долго. Однако первое упоминание об алгоритме быстрого преобразования Фурье относится к работе Гаусса, в которой он использовал свойства периодичности тригонометрических функций для расчета ДПФ. Однако на эту работу долгое время никто не обращал внимания, до тех пор пока персональные компьютеры не получили широкое распространение.

Первая программная реализация алгоритма БПФ была осуществлена в начале 60-х годов XX века Джоном Кули в вычислительном центре IBM под руководством тески Джона Тьюки, а в 1965 году ими же была опубликована статья, посвященная алгоритму быстрого преобразования Фурье. С этого момента начинается настоящая БПФ-мания. Публикуются тысячи работ посвященных алгоритму БПФ, одна за одной выходят монографии, программисты соревнуются в эффективности реализации алгоритма. БПФ становится основным инструментом спектрального анализа сигналов.

3.1 Физический смысл БПФ

Рассмотрим физический смысл дискретного преобразования Фурье. Пусть есть функция синуса x = sin(t).

Рисунок 3.1 - График функции x = sin(t)

Максимальная амплитуда этого колебания равна 1. Если умножить его на некоторый коэффициент A, то получим тот же график, растянутый по вертикали в A раз: x = Asin(t).

Частота колебания обратна периоду: ? = 1/T. Также говорят о круговой частоте, которая вычисляется по формуле: ?= 2?? = 2?T. Откуда: x = A sin(?t).

Следующий параметр это фаза, обозначаемая как ?. Она определяет сдвиг графика колебания влево. В результате сочетания всех этих параметров получается гармоническое колебание или просто гармоника:

Рисунок 3.2 - График гармонического колебания x=Asin(2?t/T+?)

Очень похоже выглядит и выражение гармоники через косинус:

Рисунок 3.3 - График гармонического колебания x=Acos(2?t/T+?)

Принципиальной разницы в приведенных представлениях нет. Достаточно изменить фазу на ?/2, чтобы перейти от синуса к косинусу и обратно. Далее будем подразумевать под гармоникой функцию косинуса:

x = A cos(2?t/T + ?) = A cos(2??t + ?) = A cos(?t + ?) (3.1)

В природе и технике колебания, описываемые подобной функцией, чрезвычайно распространены. Например, маятник, струна, водные и звуковые волны и прочее, и прочее.

Преобразуем (3.1.1) по формуле косинуса суммы:

x = A cos ? cos(2?t/T) - A sin ? sin(2?t/T) (3.2)