Разработка подсистемы САПР теплосберегающих элементов коттеджей

Дипломная работа - Строительство

Другие дипломы по предмету Строительство

отивление теплопередаче ограждающей конструкции без связей складывается из сопротивлений теплообмену на ее поверхностях и термических сопротивлений всех входящих в конструкцию слоев. Было бы удобно рассчитывать таким же образом ограждения с регулярными связями, уменьшая термическое сопротивление слоя, пронизанного связью, с помощью локального коэффициента теплотехнической однородности r. Тогда общее сопротивление теплопередаче можно рассчитать по формуле:

 

 

Где :- номер слоя без связи (i =1, 2, …, I; I - число слоев без связи);- номер слоя со связью (j = 1, 2, …, J; J - число слоев со связью);

?в, ?н - коэффициент теплоотдачи на внутренней и наружной поверхностях, Вт/(м2 С);

? - толщина слоя, м;- коэффициент теплопроводности материала слоя, Вт/(м С).

Дальнейшие исследования были направлены на нахождение локальных коэффициентов r для утепляющих и конструктивных слоев ограждений. Попытка найти зависимости r от различных факторов с помощью расчетов однослойных конструкций привели к ошибочным результатам, т. к. искривление одномерного температурного поля обусловлено не только наличием связи в самом слое, но и искривлением поля в соседних слоях. Однако многослойные конструкции обычно состоят из внутренних конструктивных слоев, наружного утеплителя и фактурных слоев. Для такого случая и были проведены исследования. Рассчитывались стены с конструктивным и фактурным слоями, материал которых имеет коэффициент теплопроводности l от 0,26 до 2,04 Вт/ (м С) и с утепляющим слоем из материалов с l от 0,03 до 0,26 Вт/(м С). Расчеты показали, что в независимости от наличия или отсутствия внутренней штукатурки и от материала фактурного слоя локальные коэффициенты теплотехнической однородности могут быть обобщены для конструктивных и утепляющих слоев в зависимости только от диаметра и шага раскладки связи, коэффициента теплопроводности материала и толщины соответствующего слоя. Результаты обобщений для тяжелых внутренних и фактурных слоев показаны на рис. 1.2 и для теплоизоляционных слоев на рис.1.3. Пользуясь представленными на рисунках значениями локальных коэффициентов r и предложенной формулой, можно рассчитать приведенное сопротивление теплопередаче многослойной конструкции, имеющей регулярно уложенные металлические связи. При несовпадении диаметра связи или шага раскладки нужные локальные значения r могут быть получены интерполяцией. Из рис. 1.4, 1.6 видно, что локальные коэффициенты теплотехнической однородности для тяжелых слоев значительно выше, чем общие коэффициенты для конструкции в целом. Это объясняется тем, что в тяжелых слоях, у которых коэффициент теплопроводности достаточно велик, тепловой поток через толщу незначительно отличается от теплового потока, проходящего по стержневой связи. Из этого следует, что нетяжелые слои являются определяющими в искажении одномерности температурного поля при передаче теплоты через стену и уменьшении общего сопротивления теплопередаче конструкции. При сравнении рис. 1.7 и рис. 1.4 видно, что локальные коэффициенты теплотехнической однородности для утепляющих слоев ниже, чем общие коэффициенты r. То есть главную роль в искажении температурного поля и уменьшении общего сопротивления теплопередаче в конструкции со стержневыми связями играют утеплители.

 

Рисунок 1.7 - Зависимость локальных коэффициентов теплотехнической однородности для утепляющих слоев:

а), г), ж) - при диаметре связи 3 мм;

б), д), з) - при диаметре связи 6 мм;

в), е), и) - при диаметре связи 8 мм;

а), б), в) - при шагах раскладки связей 300 мм;

г), д), и) - при шагах раскладки связей 500 мм;

ж), з), и) - при шагах раскладки связей 800 мм

 

 

2. Технология постройки теплосберегающих элементов

 

Задача обеспечения необходимой прочности ограждающих конструкций на сегодняшний день имеет множество решений, но требования СНиП II-3-79 существенно ограничивают количество приемлемых вариантов, а в некоторых случаях на выбор конструкции стен оказывает влияние уровень затрат на приобретение материалов и стоимость выполнения работ.

Конструктивные решения стен можно разделить на две большие группы:

однородные стены, для возведения которых используется один конструкционный материал по всей толщине в горизонтальном направлении;

комбинированные стены, в конструкции которых применяется два (или более) строительных материала.

К первой группе относятся традиционно используемые в малоэтажном коттеджном строительстве кирпичные, каменные и деревянные (бревенчатые и брусовые) конструкции, а также стены из современных материалов, (блоки из легкого бетона, крупноформатные керамические блоки и т.п.), отличающихся более высокими теплоизоляционными характеристиками.

В комбинированных стенах применяется два и более основных строительных материала, выполняющих различные функции. Один материал может быть применен для возведения основной несущей конструкции, второй - использоваться как утеплитель, а третий - защищать сооружение от неблагоприятного воздействия атмосферных явлений. К таким конструкциям относятся дома, выполненные по каркасно-щитовой технологии, деревянные дома с кирпичной облицовкой, а также дома, утепленные с помощью штукатурных или вентилируемых фасадных систем. Подобных вариантов конструкций стен достаточно. Наиболее распространенные варианты стеновых конструкций с применением древесины.

 

2.1 Бревенчатые стены

 

Конструкция стен образуетс