Разработка источников диффузионного легирования для производства кремниевых солнечных элементов

Дипломная работа - Разное

Другие дипломы по предмету Разное

ских контактов на структурах солнечных элементов электрохимическим осаждением никеля 76

4.3. Измерение основных параметров на структурах солнечных элементов 77

Выводы 82

5. Охрана труда 83

5.1. Анализ условий труда 83

5.2. Электробезопасность 85

5.3. Расчет защитного заземления 85

5.4. Техника безопасности при работе с химическими веществами 89

5.5. Освещенность рабочего места 90

5.6. Оздоровление воздушной среды 92

5.7. Пожарная безопасность 93

6. Экономическая часть 95

Литература 99

ВВЕДЕНИЕ

 

Среднее количество солнечной энергии, попадающей в атмосферу Земли огромно около 1,353 кВт/м2 или 178000 ТВт. Среднегодовая цифра, характеризующая энергию, попадающую на свободные необрабатываемые поверхности Земли, значительно меньше, но тем не менее составляет около 10000 ТВт [1]. В настоящее время большая часть этой энергии не используется.

Среди широкого разнообразия возобновляемых альтернативных источников энергии фотоэлектричество выглядит наиболее обещающим в качестве энергетической технологии будущего. Одним из перспективных направлений использования солнечной энергии является ее непосредственное преобразование в электрическую энергию полупроводниковыми системами фотопреобразования.

Прямое преобразование солнечной энергии в электрическую имеет ряд преимуществ, а именно [2]:

  1. чистота и неисчерпаемость солнечной энергии;
  2. простота конструкции и эксплуатации установок;
  3. возможность получения одного и того же КПД для генераторов в широком диапазоне вырабатываемых энергий;
  4. модульный тип солнечных элементов (СЭ), что по аналогии с такими полупроводниковыми приборами как транзисторы или интегральные схемы, обуславливает снижение цены с ростом масштаба производства;
  5. может действовать при рассеянных источниках света, например комнатного или даже при свете люминисцентных ламп.

Часто подчеркивается, что эффективность преобразования СЭ составляет менее половины эффективности атомных станций или парогенераторных систем. Такое сравнение некорректно при определении политики развития энергоресурсов будущего. Поскольку 38 % КПД паровой турбины означает, что оставшиеся 62 % затраченной нефти являются не только бесполезно утраченными, но и вредными, так как загрязняют окружающую среду, тогда как даже 10 % фотоэлектрического преобразования означает эффективное использование солнечной энергии, которая в противном случае просто теряется. Преобразование солнечной энергии не сопровождается побочными вредными эффектами. Это представляет основное различие между системами, использующими солнечную энергию и традиционными системами, использующими полезные ископаемые.

Фотоэлектрические преобразователи обладают высокой надежностью, практически не требуют обслуживания. В то же время их широкое внедрение в энергетику в настоящее время сдерживается рядом факторов, среди них одним из основных является высокая стоимость электроэнергии, вырабатываемой полупроводниковыми СЭ. Последний фактор непосредственно связан с высокой стоимостью СЭ.

Альтернативный путь снижения стоимости СЭ повышение КПД за счет совершенствования технологии их изготовления. КПД СЭ, изготовленных в опытном производстве из монокристаллического кремния, поликристаллического кремния и аморфного кремния (?-Si) составляет соответственно 17 18 %, 13 14 и 9 10 %. Коммерчески оправданное использование солнечных модулей (СМ) для энергоустановок начинается со значения КПД = 10 12 % [2].

Относительно производства электроэнергии, следует отметить, что более высокий КПД вызывает существенное удешевление вспомогательных систем и фотоэлектрических установок. При выборе СЭ для фотоэлектрической энергостанции должны учитываться также срок службы фотомодуля и срок его окупаемости. Следует отметить, что гарантийный срок службы СЭ из монокристаллического кремния составляет порядка 20 лет при 25 % падении мощности от начального уровня, а у СЭ из ?-Si уже в течение первого года службы КПД снижается от 9 10 % до 5 6 % с последующей годовой деградацией 15 % [2].

Поэтому в настоящее время существующие электростанции используют в основном модули из монокристаллического и поликристаллического кремния. Ведущие фирмы продолжают выпускать высокоэффективные монокристаллические СЭ, несмотря на их высокую стоимость.

Солнечные элементы на монокристаллическом кремнии с p n переходом первые СЭ, на которых получены реальные результаты. КПД первых конструкций СЭ соответствовал приблизительно 10 %. В 60-е годы монокристаллические СЭ на кремнии нашли применение в качестве генераторов для космических аппаратов. Тогда основное внимание уделялось увеличению КПД за счет усовершенствования технологий и конструкций, а стоимость генерируемой энергии не была критичной. Однако в дальнейшем с развитием технологии расширяются работы по созданию и улучшению СЭ наземного назначения, и основным направлением развития становится поиск путей по снижению стоимости СЭ.

Одна из возможностей снижения стоимости СЭ из монокристаллического кремния в серийном производстве замена дорогостоящих процессов фотолитографии (4 6 фотолитографий в маршруте изготовления СЭ) и вакуумного напыления более дешевыми техникой печатного нанесения контактов.

Однако в последнее время все большее внимание уделяется альтернативному пути повышение КПД солнечного элемента, несмотря на удорожание его изготовления. Комплексный технико-экономический анал?/p>