Развитие пространственных представлений учащихся в курсе математики начальной школы
Информация - Педагогика
Другие материалы по предмету Педагогика
тороной.
Нарисуй получившуюся картинку (рис. 8). Рис. 8
2. Дорисуй флажки, соблюдая закономерность их расположения (рис. 9).
Рис. 9
3. Катя, Маша и Петя нарисовали пейзажи, которые они видят. Найди и обозначь нужной буквой тот пейзаж, который нарисовал каждый из детей (рис. 10).
Рис. 10
Способствует и расширяет возможности формирования пространственных представлений младших школьников также применение упражнений на изменение формы фигуры в результате растяжения или сжатия с использованием сетки параллелограммов, например такого:
Нарисуй в другой сетке такую же линию. Используй отмеченные точки (рис. 11).
А ВС А В С
Рис. 11.
Достаточно большие возможности, по мнению многих авторов, дают для формирования пространственных представлений упражнения на развитие умений представить мысленно различные положения и форму предметов при изучении многогранников. При этом многогранники рассматриваются как тела, ограниченные замкнутой поверхностью, состоящей из плоских кусков. Естественно, что развитие таких умений должно опираться на практические упражнения с развертками многогранников. Эти упражнения складываются из решения задач следующих видов:
- из данной развертки склеить куб (рис. 12).
- отметить на развертке одним цветом ребра,
которые необходимо склеить, чтобы получить Рис. 12
данную фигуру:
- раскрасить на данной фигуре стороны (грани) в соответствии с раскраской его развертки (рис. 13); на изображении фигуры отметь линии, по которым произведен разрез так, что получилась данная развертка; обозначь вершины фигуры (многогранника) и соответствующие им точки на развертке одними и теми же буквами и т. д.
Рис. 13.
По мнению Т. М. Щегловой, кандидата психологических наук, преподавателя Шуйского госпединститута, формированию пространственных представлений должно отводиться постоянное внимание не только на отдельных уроках (с ответствующими темами), а в течение всего периода обучения математике в начальной школе, то есть на всех уроках, содержащих геометрический материал. При этом, по ее утверждению, необходимо придерживаться последовательности, которая соответствует интуитивной логике детей в ознакомлении с соответствующими понятиями, опираясь на практическую деятельность учеников в сочетании с дидактически обоснованной игровой формой.
Преподаватели Московского Государственного педагогического института
Г. Г. Кочеткова и Е. А. Крапивина приходят к выводу о том, что формирование пространственных представлений может и должно производиться уже на этапе изучения с младшими школьниками таких понятий, как точка, линия, отрезок, прямоугольник и так далее. Геометрические задания, по их мнению с которым следует согласиться, будут способствовать развитию пространственных представлений, если операции по выполнению этих заданий будут связаны с поворотами фигур и одновременным активным включением в объяснение таких понятий, как вверх вниз, влево вправо и т.д.
Приведем некоторые примеры таких заданий:
1. Назовите точки, которые лежат на прямой, которые расположены над прямой, под прямой. .В .Г
. З . А . Б . Д
.И .Ж
Какие из этих точек будут лежать на прямой (принадлежать прямой), если её продолжить вправо, влево? Проверьте.
- Найдите лишнюю фигуру. Чем она отличается от всех остальных, почему она лишняя? (Последовательно рассматриваются ряды фигур а), б), в), г), д).)
а)б)
1 2 3 4 1 2 3 4
в) 1 2 3 4 г) 1 2 3 4
д)
1 2 3 4
Сначала линии в рядах не пронумерованы. Желательно их нарисовать разным цветом.
- посмотрите внимательно на эти линии (рассматриваем ряд а).). Найдите среди них одну линию, которая чем-то отличается от других. Чем она отличается? Каким признаком? Почему вы назвали ее лишней?
- какие линии нарисовал Карандаш? (прямые).
- сколько прямых линий он нарисовал? (показываем и считаем)
- какая по счету красная линия? (называют). Давайте обозначим её цифрой. (обозначают). Аналогичная работа проводится с остальными фигурами в рядах.
- На доске или плакате рисуется несколько последовательностей лучей, например таких, какие изображены на рисунке ниже. С помощью вопросов типа: Что интересное заметили? Как меняется направление линий? и подобных детям предлагается найти закономерность в каждом ряде и продолжить этот ряд.
?
* * *
?
* * *
?
* * *
4. Соедините точки так, чтобы получились ступеньки. Как называется такая геометрическая фигура? (ломаная). Из скольких звеньев она состоит? Сколько ступенек находятся слева от зеленой? А сколько справа? Покажите ступеньки, которые выше зеленой ступе