Радиационные процессы в ионных кристаллах

Информация - Физика

Другие материалы по предмету Физика

ны на монокристаллах МgO. Для окиси магния пороговая энергия смещения электронами ионов кислорода составляет 330 КэВ, чему соответствует Еd = 60 эВ (см.: [21], с .2.25). В ЩГК в сравнении с другими механизмами ударные механизмы проявляются слабо.

При взаимодействии частиц и квантов элактргмагнитного излучения с твердыми телами большая часть их энергли расходуется на возбуждение электронной подсистзмы кристаллов. Возникающие при этом разнообразные электронные возбуждения обусловливают электронные механизмы радиационного дефектообразования в твёрдых телах. Электронные механизмы создания радиационных дефектов хорошо изучены в ионных кристаллах, особенно в ДГК. В этом случае радиационные деффекты преимущественно создаются с помощью механизмов, требующих гораздо меньшей энергии, чем ударные механизмы. Соответствующий механизмы в радиационной физике твердых тел получили название подпороговых механизмов создания радиационных дефектов.

Один из таких механизмов предложен в 1954 г. Варли Г407, впервые рассмотревшим возможность создания фреккелевских пар дефектов при двойной ионизации ионов галоида в ЩГК. Пороговая энергия механизма Варли определяется возможностью получения дважды ионизованных анионов (для КСl она равна 200 эВ). Этот процесс может произойти в результате Оже-процоссов в ионах галоида. Под действием излучения удаляется один из электронов внутреннего слоя галоида. При переходе электрона с внешнего слоя на внутренний выделяется энергия, идущая на вторичную ионизации этого иона. В результате этих процессов возникает нестабильная группировка из семи расположенных рядом положительно заряженных ионов, которая в принципе может исчезать путем выталкивания положительно заряженного галоида из узла кристаллической решетки в междоузлие. Гипотеза Варли подвергалась подробной экспериментальной проверке и было доказано, что процессы двойной многократной) ионизации кристаллообразующих частиц не играют решающей роли при создании радиационных дефектов в ЩГК (см.: 1211, С.242). Полученный розультат связывается с тем, что время жизни многократно ионизованных состояний анионов определяется временем захвата электронов соседних анионов, равным с. Это время меньше периода колебаний решетки и, вероятно, слишком мало для накопления импульса, необходимого для смещения аниона в междоузлие.

В последние годы показано, что многократная ионизация атомов приводит к созданию точечных дефектов в полупроводниках.

В твердых телах радиационные дефекты могут возникать также в результате распада некоторых сравнительно долгоживущих электронных возбуяздений. Во многих ионных кристаллах, особенно в ЩГК, этот механизм создания радиационных дефектов является доминирующим. Подтвериздением этого обстоятельства служит следующий факт (см.:[21], с.224). В отношении радиационного дефектообразования мощное облучение кристаллов NaCl нейтронами и -излучением ядерного реактора приводит практически к тем же результатам, что и облучение рентгеновским излучением и даже ультрафиолетовых счетом, селективно создающим экситоны или электронно-дырочные пары. При облучении кристалла NaCl частицами и фотонами в нем возникают электронные возбуждения широкого диапазона энергий и времен жизни, высокоэнергэтичеокие электронные возбуждения распадаются на простейшие стабильные возбуждения типа электронно-дырочных пар и экситонов (2.1, рис.2.2). Именно низкоэнергетические электронные возбуждения с достаточной для обнаружения эффективностью превращаются в дефекты кристаллической решетки. Первичными радиационными дзфектами в ЩГК являются френкелевские пары (нейтральные или заряженные). Такого рода дефекты эффективно генерируются в ходе распада автолокализованных экситонов и при безызлучатальных рекомбинациях электронов с Vk -центрами:

(2.9)

(2.10)

До распада каждый молекулярный ион и занимает два анионны узла. После распада ()* восстанавливается регулярный узел решетки , атом Х смещается в междоузлие (), а оставшаяся на его месте анионная вакансия Va захватывает электрон . В результате реакций (2.9) и (2.10), предложенных Витолом и Хершем, возникают нейтральные френкелевские пары: междоузельный атом галоида () и анионная вакансия, захватившая электрон (). Генерация заряженных френкелевских пар может осуществляться в ходе реакции:

(2.11)

В принципе возможны и другие реакции распада низкоэнергетических электронных возбуждений на структурные дефекты в регулярных узлах кристаллической решетки.

В основе механизмов распада электронных возбуждения па структурные дефекты лежит элоктронколебательное взаимодейстпид, обеспечивающес превращение потенциальной энергии электронных возбуждений в смещения ионов порядка , постоянной решетки собственных электронных воздуждений (Ее) больше энергии созда-

ния радиационных дефектов (Еd), а время жизни электронных воз-буддений в элементарной ячейке ( ) больше периода колебаний кристаллообразующих частиц ( ), то электрон-колебательное взаимодействие может привести к распаду электронного возбуждения на френкелевские дефекты. Следовательно, неравенства Ее>Еd и можно рассматривать как приближенные устовия возможности распада электронных возбуждений с ровдением дефектов за счет электрон-колебательных взаимодействий [21].

С этой точки зрения объяснима низкая эффективность прямого дефектообразования при рас?/p>