Аппаратные средства ПК

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

тся, что для того, чтобы передать двоичное число "00100000", надо изначально на всех линиях иметь 00000000 (то есть на всех физических жилах иметь 0 вольт), потом на одну секунду на третьей линии поднять сигнал в "единицу", подержать его 1 секунду, а потом снова вернуть на все линии "нули". То есть, физически, изначально имеем на всех линиях "ноль" вольт, потом подать на третью по счету линию 1 вольт (на остальных - так и остается "ноль"), подержать его целую секунду, и потом снова вернуть на все линии "ноль" вольт.

Допустим, мы хотим передавать больше информации, чем одно двоичное число в секунду. Тогда нам надо увеличивать скорость в каждой линии - два, три, пятьсот, миллион переключений из нуля в единицу и обратно в ноль в секунду. Но есть предел (не теоретический, а практический) увеличения скорости для проводника длиной 40см - когда скорость переключения в нем сильно возрастёт (то "есть частота переключения" из состояния "нуля" в "единицу" и потом обратно в "ноль" - понимаешь? то есть частота - запомнил? а где есть частота, там есть "длина волны", которая составляет "единицу делёную на частоту") и длина волны в каждом проводнике начнет приближаться к длине самого проводника (то есть к длине шлейфа), то возникают уже "радиоэффекты":

а) отражения сигнала от конца проводника ("стоячая волна”), которые сильно искажают сигнал вплоть до его полного исчезновения;

б) потери на излучение (то есть каждый проводник в шлейфе становится самой настоящей антенной, и энергия просто уходит в окружающее пространство с него;

в) и тому подобное (чтоб голову тебе не забивать).

И мы упрёмся, НАПРИМЕР, в миллион переключений в секунду в каждой жиле. То есть для восьми жил в параллельном шлейфе мы уткнемся в миллион двоичных чисел в секунду.

А в реале мы бы уткнулись в PIO4 (MW-0).

Но мы ж ненасытные, нам этого мало.

И тогда мы начинаем хитрить (вот где нужны графики!).

Но для рассмотрения нашей "хитрости" давай снова вернемся в скорость в шлейфе "одно двоичное число в секунду".

Мы не станем возвращать "единицу" в "ноль" в конце секунды!

Мы примем, что для ВТОРОЙ секунды "нулевым" состоянием в шлейфе является состояние 00100000! И сразу подадим нужное двоичное число, например, 00000010, но откорректировав его соответственно "исходному для второй секунды" "нулю". То есть в шлейфе окажется состояние линий 00100010.

"Ну и?" - скажет невнимательный читатель, - "Чего мы добились? За две секунды мы передали два двоичных числа, плюс получили головную боль с расчетом состояния для второй секунды".

"Э-э-э-э...." - подняв палец, скажу я, - "Мы добились того, что перешли из "физических" переключений в "логические" - состояние ТРЕТЬЕЙ линии за две секунды не изменилось, то есть мы не упрёмся в миллион физических переключений в секунду в этой (и в каждой из остальных!) линии и ПОКА не создадим радиоэффектов".

Внимательный читатель спросит: "А зачем нам ждать начала второй секунды, чтобы перевести шлейф во второе состояние? чего мы тянем с отправкой второго двоичного числа? давай сделаем это сразу, как только ЗАФИКСИРУЕТСЯ состояние "единицы" в третьей линии, то есть СРАЗУ, как только будет передано первое двоичное число?!"

"Правильно," - скажу я. Но синхронизацию давай всё же оставим просто разделим секунду на миллион частей. Состояние третьей линии ЗАФИКСИРОВАЛОСЬ в "единице"? Следующее состояние не требует изменения состояния в третьей линии в "ноль"? “ВременнАя метка” разрешает дальнейшую передачу? Тогда передаем дальше переводим седьмую линию в "единицу"!

Таким образом мы сможем колоссально поднять скорость в шлейфе.

Но не до беспредела.

Ввиду того, что из положения "ноль вольт" в положение "1 вольт" (и обратно) линия переходит НЕ МГНОВЕННО, а с небольшой задержкой, то существует время на ФИКСАЦИЮ состояния линии. Задержка обусловлена паразитными параметрами сигнальной линии - емкостями и индуктивностями не только самой линии, но и "передающего транзистора", и "принимающего транзистора". То есть при переходе из "нуля" в "единицу" сигнал выглядит как взлёт фейерверка - сначала быстро, но потом всё медленней и медленней. А при переходе из "единицы" в "ноль" сигнал КАК БЫ похож на падение метеорита - сначала быстро влетает в атмосферу, а потом всё больше и больше тормозится в ней; то есть полезный сигнал "вязнет" в паразитных параметрах. Разумеется, можно БЕСКОНЕЧНО ПЫТАТЬСЯ снизить паразитные параметры транзисторов... а что делать с медными проводниками линий? Да хоть с золотыми?! Кроме того, мы же снова приблизимся к состоянию, когда рядом расположенные проводники/линии будут превращаться в антенны друг для друга, и тем самым искажать сигнал друг другу. Разумеется, мы снова всех обхитрим - сделаем не 40-жильный провод с рядом расположенными "дельными" проводниками, а 80-жильный, где каждый "дельный" проводник отделен от соседнего "дельного" проводника "земляным" проводником - это намного снизит влияние соседних "дельных" проводников друг на друга.

Всеми этими ухищрениями мы сможем перейти с АТА-33 до АТА-133.

Но дальше - НЕКУДА.

"Стоп!" - скажет нетехнологичный читатель, - "Почему некуда? Давайте расширим сигнальную шину с 8 проводников до 16, или сразу до 64 линий. Давайте не просто проложим между каждыми "дельными" проводниками "земляной" проводни?/p>