Протокол межсетевого взаимодействия IP

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

? локально, так что протокол IP может теперь формировать IP-пакеты с адресом назначения 142.06.13.14 для взаимодействия с компьютером s1.msk.su.

3. Протокол IP компьютера cit.dol.ru проверяет, нужно ли маршрутизировать пакеты для адреса 142.06.13.14. Так как адрес сети назначения равен 142.06.0.0, а адрес сети, к которой принадлежит компьютер, равен 194.87.23.0, то маршрутизация необходима.

4. Компьютер cit.dol.ru начинает формировать кадр Ethernet для отправки IP-пакета маршрутизатору по умолчанию с IP-адресом 194.87.23.1. Для этого ему нужен МАС-адрес порта маршрутизатора, подключенного к его сети. Этот адрес скорее всего уже находится в кэш-таблице протокола ARP компьютера, если он хотя бы раз за последнее включение обменивался данными с компьютерами других сетей. Пусть этот адрес в нашем примере был найден именно в кэш-памяти. Обозначим его МАС11, в соответствии с номером маршрутизатора и его порта.

5. В результате компьютер cit.dol.ru отправляет по локальной сети кадр Ethernet, имеющий следующие поля:

DA (Ethernet)...DESTINATION IP...... МАС11 142.06.13.146. Кадр принимается портом 1 маршрутизатора 1 в соответствии с протоколом Ethernet, так как МАС-узел этого порта распознает свой адрес МАС11. Протокол Ethernet извлекает из этого кадра IP-пакет и передает его программному обеспечению маршрутизатора, реализующему протокол IP. Протокол IP извлекает из пакета адрес назначения и просматривает записи своей таблицы маршрутизации. Пусть маршрутизатор 1 имеет в своей таблице маршрутизации запись

142.06.0.0 135.12.0.11 2 1,

которая говорит о том, что пакеты для сети 142.06. 0.0 нужно передавать маршрутизатору 135.12.0.11, подключенному к той же сети, что и порт 2 маршрутизатора 1.

7. Маршрутизатор 1 просматривает параметры порта 2 и находит, что он подключен к сети FDDI. Так как сеть FDDI имеет значение максимального транспортируемого блока MTU больше, чем сеть Ethernet, то фрагментация поля данных IP-пакета не требуется. Поэтому маршрутизатор 1 формирует кадр формата FDDI, в котором указывает MAC-адрес порта маршрутизатора 2, который он находит в своей кэш-таблице протокола ARP:

DA (FDDI)...DESTINATION IP...... МАС21 142.06.13.14

8. Аналогично действует маршрутизатор 2, формируя кадр Ethernet для передачи пакета маршрутизатору 3 по сети Ethernet c IP-адресом 203.21.4.0:

DA (Ethernet)...DESTINATION IP...... МАС32 142.06.13.14

9. Наконец, после того, как пакет поступил в маршрутизатор сети назначения - маршрутизатор 3, появляется возможность передачи этого пакета компьютеру назначения. Маршрутизатор 3 видит, что пакет нужно передать в сеть 142.06.0.0, которая непосредственно подключена к его первому порту. Поэтому он посылает ARP-запрос по сети Ethernet c IP-адресом компьютера s1.msk.su (считаем, что этой информации в его кэше нет), получает ответ, содержащий адрес MACs1, и формирует кадр Ethernet, доставляющий IP-пакет по локальной сети адресату.

DA (Ethernet)...DESTINATION IP...... МАСs1 142.06.13.14

Структуризация сетей IP с помощью масок

Часто администраторы сетей испытывают неудобства, из-за того, что количество централизовано выделенных им номеров сетей недостаточно для того, чтобы структурировать сеть надлежащим образом, например, разместить все слабо взаимодействующие компьютеры по разным сетям.

В такой ситуации возможны два пути. Первый из них связан с получением от NIC дополнительных номеров сетей. Второй способ, употребляющийся более часто, связан с использованием так называемых масок, которые позволяют разделять одну сеть на несколько сетей.

Маска - это число, двоичная запись которого содержит единицы в тех разрядах, которые должны интерпретироваться как номер сети.

Например, для стандартных классов сетей маски имеют следующие значения:

255.0.0.0 - маска для сети класса А,

255.255.0.0 - маска для сети класса В,

255.255.255.0 - маска для сети класса С.

В масках, которые использует администратор для увеличения числа сетей, количество единиц в последовательности, определяющей границу номера сети, не обязательно должно быть кратным 8, чтобы повторять деление адреса на байты.

Пусть, например, маска имеет значение 255.255.192.0 (11111111 11111111 11000000 00000000). И пусть сеть имеет номер 129.44.0.0 (10000001 00101100 00000000 00000000), из которого видно, что она относится к классу В. После наложения маски на этот адрес число разрядов, интерпретируемых как номер сети, увеличилось с 16 до 18, то есть администратор получил возможность использовать вместо одного, централизованно заданного ему номера сети, четыре:

129.44.0.0 (10000001 00101100 00000000 00000000)

129.44.64.0 (10000001 00101100 01000000 00000000)

129.44.128.0 (10000001 00101100 10000000 00000000)

129.44.192.0 (10000001 00101100 11000000 00000000)

Например, IP-адрес 129.44.141.15 (10000001 00101100 10001101 00001111), который по стандартам IP задает номер сети 129.44.0.0 и номер узла 0.0.141.15, теперь, при использовании маски, будет интерпретироваться как пара:

129.44.128.0 - номер сети, 0.0. 13.15 - номер узла.

Таким образом, установив новое значение маски, можно заставить маршрутизатор по-другому интерпретировать IP-адрес. При этом два дополнительных последних бита номера сети часто интерпретируются как номера подсетей.

Еще один пример. Пусть некоторая сеть относится к классу В и имеет адрес 128.10.0.0 (рисунок 4.4). Этот адрес используется маршрутизатором, соединяющим сеть с остальной частью интерсети. И пусть среди всех станций сети есть станции, слабо взаимодействующие между собой. Их желательно было бы изолировать в разных сетях. Для этого сеть можно разделить на две сети, подключив их к соответствующим портам маршрутизатора, и задать для этих портов в качестве маски, например, число 255.255.255.0, то есть организовать внутри исходной сети с централизовано заданным номером две подсети класса C (можно было бы вы?/p>