Производство стирола

Контрольная работа - Химия

Другие контрольные работы по предмету Химия

?я может проводиться в жидкой или в паровой фазе, при температуре от 95С до 450С и мольном отношении бензол / этилен от 21:1 до 6:1. Полученный алкилат содержит 12-35% массовых этилбензола, 55-85% массовых бензола и 2,5-8% массовых диэтилбензола. Современные установки по производству этилбензола достигают мощности 740 тыс. т продукта в год. Выход этилбензола в расчете на бензол составляет 95%, при расходных коэффициентах на 1 т продукта: бензол 0,77 т, этилен 0,3 т, хлорид алюминия 0,03 т.

 

3. Области применения продукта

 

Стирол (винилбензол, фенилэтилен)

 

 

является исходным мономером для производства полистирола.

Впервые стирол был выделен в 1831 г. Однако до Второй мировой войны стирол и его полимеры широко не применялись в промышленности. В промышленном масштабе стирол был получен впервые в Германии в 1930 г. Производство стирола началось в США в 1933 г., но синтезированный из него полистирол был низкого качества и высокой стоимости. Стирол использовали только для производства полистирола в виде порошка для литья под давлением. Наличие же больших производственных мощностей по производству мономерного стирола стимулировало расширение исследований по применению полистирола в новых областях, в частности в производстве товаров массового потребления.

Развитие исследований в области синтеза полимеров и сополимеров стирола привело к созданию большой группы полимерных материалов с самыми разнообразными свойствами.

Из мономеров для производства каучука общего назначения стирол как сомономер по объему производства находится на третьем месте, уступая изопрену и бутадиену. До начала 1960-х годов, когда появились стереорегулярные бутадиеновые и изопреновые каучуки, бутадиен-стирольные каучуки были наиболее массовыми среди всех выпускаемых эластомеров.

В промышленном масштабе выпускаются различные многокомпонентные сополимеры стирола. Наиболее крупнотоннажные из них - акрилонитрилбутадиенстирольные (АБС-сополимеры), вырабатываемые в широком ассортименте в зависимости от соотношения исходных мономеров и условий проведения процесса. На их основе получены самые разнообразные ударопрочные конструкционные материалы с усиливающими наполнителями или в сочетании с другими полимерами. Пластмассы на основе АБС-сополимеров получили широкое распространение в различных областях промышленности благодаря высокой химической стойкости, ударопрочности, теплостойкости и другим свойствам. Эти пластмассы легко перерабатываются литьем, экструзией, прессованием. Выпускаются также сополимеры винилхлорид-бутадиен-стирол, акрилат-стирол-диеновый каучук, сополимер стиролакрилонитрилметилметакрилат, сополимер акрилонитрил-стирол-эфир или амид ?-цианкоричной кислоты и др.

 

4. Функциональная и химическая схемы производства и их описание

 

Производство стирола дегидрированием этилбензола

Физико-химические основы процесса.

Дегидрирование этилбензола до стирола представляет собой обратимую эндотермическую гетерогенную каталитическую реакцию, описываемую уравнением:

 

 

Реакция катализируется оксидами и сульфидами металлов восьмой группы периодической системы. Энергия активации реакции дегидрирования составляет 152 кДж/моль, поэтому скорость ее сильно зависит от температуры. Это также указывает на то, что реакция протекает в кинетической области. Реакция (г) протекает с поглощением тепла и увеличением объема газообразных продуктов. Следовательно, сдвигу равновесия вправо способствует повышение температуры и понижение давления - общего и парциального этил-бензола. Так, например, при температуре 595С равновесная степень превращения этилбензола при давлении 0,1 МПа равна 0,4, а при давлении 10 кПа - 0,8. Вследствие этого процесс дегидрирования этилбензола проводится при температуре 600С и общем давлении 0,1 МПа, что соответствует парциальному давлению этилбензола около 10 кПа. Понижение парциального давления этилбензола при заданной степени конверсии позволяет также вести процесс дегидрирования при более низкой температуре.

Для снижения парциального давления этилбензола в реакционную смесь вводят перегретый водяной пар в массовом отношении к этилбензолу 2,5:1. Пар, одновременно, играет роль теплоносителя, обеспечивая приток тепла для осуществления эндотермической реакции (а).

Реакция дегидрирования этилбензола на железооксидных катализаторах сопровождается побочными реакциями деструкции (крекинга) этилбензола и взаимодействия их продуктов, приводящими к образованию бензола, толуола, а также метана, этана и оксидов углерода, переходящих в газ:

 

 

Технологическая схема производства стирола дегидрированием этилбензола.

Технологический процесс производства стирола из этилбензола состоит из двух основных этапов: дегидрирование этилбензола и выделение стирола-ректификата. Процесс построен как циркуляционный и предусматривает возвращение в цикл избытка этилбензола и использование конденсата водяного пара для выработки свежего перегретого пара.

Технологическая схема этого процесса представлена на рис. 3.

 

Рис. 3. Технологическая схема производства стирола дегидрированием этилбензола: 1 - котел-утилизатор, 2 - испаритель, 3 - теплообменник, 4 - трубчатая печь, 5 - реактор, 6 - водяной холодильник, 7 - рассольный холодильник, 8 - сепаратор отделения газа, 9 - сепаратор отделения конденсата, 1