Проектирование цифрового фазового звена
Курсовой проект - Компьютеры, программирование
Другие курсовые по предмету Компьютеры, программирование
°ла. При однобайтной обработке данных вследствие масштабирования шумы квантования увеличиваются в kМ раз. Их уменьшения можно добиться переходом к двухбайтному представлению данных при хранении и обработке, что приведет, естественно, к увеличению длины программы и числа машинных тактов для ее реализации.
Уточнение аппаратной части фильтра
Принятые ранее решения по аппаратной части и программе изменятся в минимальной степени, если при FCLK МП = 3 МГц тактовые импульсы для АЦП и таймера с частотой FCLK АЦП= FCLK Т = 1,5 МГц получить путем деления в два раза в счетном триггере. Для этого можно применить ИС КМОП К564ТВ1 (сдвоенный JK-триггер с динамическим тактовым входом и асинхронными RS-входами).
8. Расчёт АЧХ фильтра
Разностное уравнение проектируемого фильтра в общем виде можно представить следующим образом:
yn = b 20X n + b 21X n 1 + b 22X n 2 a 21 y n 1 a 22 y n 2.
Коэффициенты b1i , a1i , b2i , a2i определяют характеристики фильтра.
При значениях коэффициентов
b 20 = 0.958;b 21 = 1;b 22 = 0; a 21 = 0;a 22 = 0.958
фильтр имеет АЧХ фазового звена.
В z-плоскости свойства цифрового фильтра описывает передаточная функция H(z), которая при двухкаскадной структуре и для приведенного выше разностного уравнения имеет вид:
При z = e jT = e j2fT, где Т = ТД, сигнал на входе фильтра синусоида с частотой f и с единичной амплитудой, а функция H(e j2fT) равна частотной характеристике фильтра, из которой можно получить АЧХ и ФЧХ.
Значения коэффициентов разностного уравнения определяют форму и параметры частотных характеристик, поэтому для выявления влияния их приближенного представления следует рассчитать АЧХ при заданных (точных) и реальных (приближенных) значениях коэффициентов:
9. Заключение
В данной курсовой работе была построена схема цифрового устройства и разработана программа, обеспечивающая работу данного устройства как цифрового фазового звена. Устройство имеет высокое быстродействие и в полной мере удовлетворяет требованиям технического задания. Необходимость в высоком быстродействии связана со стремлением обрабатывать в реальном масштабе времени широкополосные сигналы.
10. Список использованных источников
1. Щелкунов Н.Н., Дианов А.П. Микропроцессорные средства и системы. М.: Радио и связь, 1989.
2. Балашов Е.П., Григорьев В.Л., Петров Г.А. Микро- и мини-ЭВМ: Учеб. пособие для вузов. М.: Энергоатомиздат, 1984.
3. Угрюмов Е.П. Цифровая схемотехника. СПб.: БХВ-Петербург, 2001.
4. Рафикузаман М. Микропроцессоры и машинное проектирование микропроцессорных систем: В 2-х кн. Кн.1 и 2 /Пер. с англ. М.: Мир, 1988.
5. Микропроцессорный комплект К1810: Структура, программи-рование, применение: Справочная книга / Ю.М.Казаринов, В.Н.Номоконов, Г.С.Подклетнов, Ф.В.Филиппов; Под. ред. Ю.М.Казаринова. М.:Высш. шк., 1990.
6. Григорьев В.Л. Программное обеспечение микропроцессорных систем. М.: Энергоатомиздат, 1983.
7.Солонина А.И., Улахович Д.А., ЯковлевЛ.Н. Алгоритмы и процессоры цифровой обработки сигналов. СПб.: БХВ-Петербург, 2001.
8. Соколов Ю.П. Микроконтроллеры семейства MCS-51: архитектура. программирование, отладка: Учеб. пособие. Рязан. гос. радиотехн. акад. Рязань, 2002.
9. Интегральные микросхемы: Микросхемы для аналого-цифрового преобразования и средств мультимедиа. Выпуск 1. М.: ДОДЭКА, 1996.
10. Федорков Б.Г., Телец В.А. Микросхемы ЦАП и АЦП: функ-ционирование, параметры, применение. М.: Энергоатомиздат, 1990.