Проектирование системы электроснабжения для жилого массива

Дипломная работа - Физика

Другие дипломы по предмету Физика

?его источника электроснабжения, что обеспечивает минимальное нарушение и потери в технологическом процессе. Схемы АВР должны:

  1. обеспечивать возможно раннее выявление отказа рабочего источника питания;
  2. действовать согласованно с другими устройствами автоматики (АПЧ, ВЧП) в интересах возможно полного сохранения технологического процесса;
  3. не допускать включение резервного источника на КЗ;
  4. не допускать подключение потребителей к ркзервному источнику, напряжение на котором понижено.

 

3.2 ЗАЩИТА ЛИНИЙ 10 кВ

 

Наиболее простым и дешёвым видом релейной защиты кабельных и воздушных линий с односторонним питанием от всех видов коротких замыканий и перегрузок являются максимальные токовые защиты. Принцип действия такой защиты основан на том, что при возникновении к. з. или перегрузки ток на защищаемом участке линии становится больше тока, имевшегося при нормальном режиме. Под действием увеличенного тока защита срабатывает и отключает повреждённый участок [ 5 ].

В данной работе защита линий 10 кВ будет реализованна токовой отсечкой без выдержки времени и МТЗ.

Двухступенчатая токовая защита выполняется с помощью электромагнитных реле тока РТ-40.

МТЗ содержит два органа: пусковой и выдержки времени, а токовая отсечка имеет только пусковой орган. Функции пускового органа выполняет реле тока, которое входит в измерительную часть схемы. Оно реагирует на повреждения или нарушения нормального режима работы и вводит в действие другие органы защиты. В качестве органа выдержки времени используется отдельное реле времени. В схемах токовых защит имеются еще вспомогательные реле, например, промежуточное и указательное. Вместе с реле времени они образуют логическую часть схемы. Промежуточное реле облегчает работу контактов основных органов защиты, и вводя некоторое замедление, предотвращает действие токовой отсечки при работе трубчатых разрядников. Указательное реле позволяет контролировать срабатывание защиты.

МТЗ с независимой выдержкой времени, выполняется по схеме неполной звезды на постоянном оперативном токе. Для выполнения защиты использованы два трансформатора тока (ТТ), установленные в фазах А и С за выключателем. Исходя из требований техники безопастности, вторичные обмотки трансформаторов тока заземляются.

Схема релейной защиты

При возникновении повреждения срабатывают пусковые органы защиты реле 1Т и 2Т. При этом их контакты замыкают цепь обмотки реле времени В, приводя его в действие. По истечении установленной выдержки времени, реле времени В замыкает контакт в цепи обмотки промежуточного реле П, которое срабатывая, отключает выключатель. При этом указательное реле У фиксирует действие защиты на отключение.

Токовая отсечка работает почти также, отличие заключается в том, что у неё нет выдержки времени, а значит отсутствует реле времени.

Селективное действие токовой отсечки достигается тем, что её ток срабатывания принимается большим максимального тока короткого замыкания, проходящего через защиту при повреждении вне защищаемого элемента.

 

3.3 ВЫБОР ТРАНСФОРМАТОРОВ ТОКА

 

Для правильного действия релейной защиты требуется точная работа трансформаторов тока при протекании в защищаемой цепи токов перегрузки и токов короткого замыкания, которые во много раз могут превышать их номинальные первичные токи.

Трансформаторы тока предназначены:

  1. В установках напряжением до 1000 В снизить измеряемый ток до значения, допускающего подключение последовательных катушек измерительных приборов или аппаратов защиты (реле);
  2. В установках напряжением более 1000 В отделить цепи высокого напряжения от цепей измерительной и защитной аппаратуры, обеспечивая безопастность их обслуживания, и выполнять те же функции, что и в установках до 1000 В.

Трансформаторы тока имеют класс точности 0,2; 0,5; 1; 3; 10, что соответствует значениям токовых погрешностей, выраженным в процентах. Класс точности трансформаторов тока должен быть: для счётчиков 0,5; для щитовых измерительных приборов и реле 1 и 3.

Учитывая необходимость подключения трансформаторов тока для питания измерительных приборов и реле с различными классами точности, высоковольтные трансформаторы тока выполняют с двумя вторичными обмотками. Например, 0,5/Р для счётчиков и реле; 0,5/Д для счётчиков и реле дифференциальной защиты с различными номинальными нагрузками [ 12 ].

Выбираем рансформаторы тока в РП.

Условие выбора трансформаторов тока

 

Iном. тт. ? Iраб. max.

Iраб. max.1. = 136,6 А

Iраб. max.2. = 76,6 А

 

Выбираем трансформатор тока типа ТПМ 30 150/5 и ТПМ 30 100/5 (таб.2-79 стр.182 [4])

Коэффициент трансформации ТТ Кт.1. = 30.; Кт.2. = 20.

 

3.3.1 ВЫБОР МТЗ

 

Расчитываем ток срабатывания защиты

 

Кзап. * Кс.з.

Ic.з. = *Iраб.max. (3.1.)

Кв

 

Где: Iраб.max. ток кольца в нормальном режиме работы;

Кзап. коэффициент запаса, учитывает погрешность реле, неточности расчета и принимается = 1,1 1,2;

Кс.з. коэффициент самозапуска, в городских электросетях принимается = 1;

Кв. коэффициент возврата токового реле, равный = 0,8 0,85.

 

1,1 * 1

Ic.з.1. = * 136,6 = 187 А

0,8

 

1,1 * 1

Ic.з.2. = * 76,6 = 105 А

0,8

 

Расчитываем ток срабатывания реле

 

Iс.з.

Iср.р. = (3.2.)

Кт. * Ксх.