Проектирование сети беспроводной связи WiMAX стандарта IEEE 802.16e для сельского населенного пункта

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



В°ты.

Рассмотрим третий вариант, который наиболее подходит для реализации сети WiMAX.

2.2.3 Комбинированное планирование сот

Решение проблемы связанных с соканальными помехами на краю сот, в стандарте WiMAX предложен метод, комбинированного повторного использования частоты (FFR) рис. 2.10, то есть комбинированное планирование сот. В FFR пользователи, находящиеся на краю соты используют часть всех доступных подканалов, в то время как пользователи внутри, то есть в центре соты пользуются всеми доступными подканалами. Пользователи же, находящиеся на краю соты, работают iастотами Reuse-3 (в дальнейшем будет обозначаться как R3), в то время как пользователи в центре соты работают iастотами Reuse-1 (R1). В процессе передачи кадра пользователи R3 сгруппированы в зону R3, которая отделена во времени от зоны R1. Преимущество метода FFR заключается в предоставлении пользователям на краю сот лучшего качества сигнала, за iёт физического разделения от источника помех. Улучшенное качество сигнала также предоставит более высокую пропускную способность для пользователей на краю соты. Однако, это достигается за iет менее эффективного спектрального распределения ресурсов. Таким образом, важно проанализировать, преобладают ли преимущества над недостатками.

Рис. 2.9. а) Структура FFR; б) Спектральная диаграмма FFR

Показанная на рис. 2.9, структура кадра имеет временное и частотное распределение ресурсов для зон R1 и R3. Заголовок управления кадрами и протокол доступа к среде (FCH/MAP), предоставляет информацию о распределении подканалов, которая позволяет пользователям определять местонахождение своего блока ресурса в пределах кадра. Кроме того, FCH/MAP осуществляет передачу сигналов, такую как переключение зональных информационных элементов, которые указывают точки переключения между зонами R1 и R3.

В стандарте WiMAX, как уже было сказано в гл. 1, используют дуплексное временное разделения каналов (TDD) [6]. В TDD, передачу информации в восходящем (UL) и нисходящем (DL) канале (рис.2.10) выполняют последовательно через отрезки времени, и отделены друг от друга защитным интервалом. Таким образом, передаваемый кадр разделен на два субкадра. Кроме того, в пределах субкадра существуют зоны для частоты R1 и R3 (так называемые зоны R1 и R3). Они имеют общие границы для всех сот, работающих в сети, таким образом, межзональные помехи между R1 и R3 исключены.

Рис. 2.10. Структура кадра в нисходящем (DL) канале.

Однако возможны динамические изменения границ зон, в зависимости от перемещения пользователей и нагрузок в соте. Один из ключевых аспектов метода FFR: своевременное переключения из зоны в зону и назначение абоненту зоне R1 либо R3, которое должно соответствовать качеству сигнала и изменениям расположения МС. Базовая станция (БС) должна получать регулярную сигнальную посылку от мобильной станция (МС), на основе которой БС решает, какую из зон предоставить R1 или R3. При быстром движении МС скорость обновления обработки сигнальных посылок должна быть более частыми.

Предоставление зон в БС для конкретного пользователя может быть основано на нескольких параметрах. Эти параметры должны быть определены из сигналов посылок от МС до БС [7]. Как следует из сказанного, принцип FFR существеннее, для решения проблем связанных, с соканальными помехами пользователей, находящихся на краю соты. Следовательно, параметры для назначения зон, рассматриваются от БС к МС. БС работает одновременно с обеими зонами, как с R1, так R3, настраивая порог перехода с зоны в зону. Однако, главный недостаток принципа назначения зон состоит в том, что качество сигнала не обязательно коррелирует с расстоянием от БС из-за эффектов, известных как быстрые замирание и затенение.

В процессе оценке стандарта WiMAX одним из важнейших параметров является охват и достаточно хорошее качество сигнала, который описывает процент пользователей, которые могут быть обслужены.

Компанией Fujitsu Laboratories of Europe Ltd., были проведены исследование комбинированного планирования сот, и в сравнении с другими принципами планирование Reuse1 и Reuse3 [8], были получены следующие результаты.

Пропускная способность FFR, оказалось лучше на 18% по сравнению с Reuse3, но хуже на 13% чем Reuse1. Сравнения пропускной способности показано на рис. 2.11.

Рис. 2.11. Пропускная способность для Reuse1, FFR и Reuse3.

Также были исследованы покрытия и качество принимаемого сигнала на различных участках соты. В центре соты на расстоянии не превышающем 300 метров от БС (рис. 2.12.) получены следующие результаты: при Reuse1, число пользователей, которые могут быть обслужены, достигло 76%. Однако при FFR, число обслуживаемых пользователей в центре соты увеличивается до 96%.

Сравнение с Reuse3 не целесообразно, так как пропускная способность гораздо ниже чем при Reuse1 и FFR.

Рис. 2.12. Характеристика обслуживаемых пользователей, на расстоянии до 300 м., от БС.

Рассмотрим возможное число пользователей с на краю сот. Результаты, полученные на краях сот таковы, что при Reuse1 число обслуживаемых пользователей достигает только 25%, в случае FFR оно достигло 76%, что является достаточно высоким показателем. На рис. 2.13 иллюстрированы результаты, полученные на краю сот, на расстоянии от 800 до 1000 м.

Рис. 2.13. Характеристика обслуживаемых пользователей, на расстоянии от 800 до 1000 м., от БС

Результаты достаточно убедительны - FFR является наиболее оптимальным методом для планирования сетей WiMAX.

2.3 Характ

Copyright © 2008-2014 studsell.com   рубрикатор по предметам  рубрикатор по типам работ  пользовательское соглашение