Проектирование модульной конструкции измерителя барометрического давления для барометрического нивелирования
Курсовой проект - Геодезия и Геология
Другие курсовые по предмету Геодезия и Геология
са молекулы газа,- постоянная Больцмана.
Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле. При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.
Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной kT. Чем выше температура T, тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести mg (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести mg может изменяться за счёт двух величин: ускорения g и массы частиц m.
Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.
Реальное распределение давления и плотности воздуха в земной атмосфере не следует барометрической формуле, так как в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.
Барометрическая формула лежит в основе барометрического нивелирования - метода определения разности высот ?h между двумя точками по измеряемому в этих точках давлению ( и ). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга.
Барометрическая формула записывается в этом случае в виде:
(в м), где
t - средняя температура слоя воздуха между точками измерения,- температурный коэффициент объёмного расширения воздуха.
Погрешность при расчётах по этой формуле не превышает 0,1-0,5 % от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.
3.3 Барометрическое нивелирование
Барометрическое нивелирование или измерение высот - один из методов нивелирования, основанный на установленной Блезом Паскалем в 1647 связи давления воздуха с высотой точки над уровнем моря (Барометрическая формула).
Нивелирование даёт средство наносить на планы ряды возвышений и понижений или профили местностей по определенным направлениям. Если для нивелирования употребляются геодезические инструменты, то оно называется геодезическим, если барометры - то барометрическим. Для измерения высоких гор употребляются особые приёмы и приборы; способ вычисления - тригонометрический, и само измерение называется этим словом. Есть также барометрический способ определения больших высот. Перенесение барометра с одного места на другое, возвышенное над первым на 10 м, сопровождается понижением ртути приблизительно на 1 мм, но дальнейшее поднятие еще на 10 метров производит несколько меньшее понижение ртути, а следующее поднятие - еще того меньшее. Измерение давления атмосферы с высотой усложняется его температурой, так как холодный воздух тяжелее теплого. Вдобавок пары воды, всегда содержащиеся в воздухе, количественно изменяются от многих причин, действующих иногда вместе, иногда отдельно, что опять влияет на атмосферное давление. Поэтому зависимость величины понижения ртутного столба в барометре с высотой места, на которое он перенесен, очень сложна, и вычислить возвышение одного места над другим из показаний барометра чрезвычайно трудно, коль скоро эти два места значительно удалены одно от другого. Эта трудность ещё увеличивается, если в одной местности происходят перемены в атмосфере, не достигающие другой местности. В таких случаях приходится принять в расчёт среднюю высоту ртутного столба в каждой из сравниваемых местностей, выведенную из многолетних наблюдений.
Для наблюдения высоты места из барометрических наблюдений предложено несколько формул; здесь приводится одна, выведенная Лапласом:
В этой формуле буквой Z означено искомое возвышение одной местности, в которой высота барометра есть H мм над другой, в которой в то же время высота ртути есть h мм, температура в первой местности есть t, во второй t1 - стоградусного термометра; буквою ? означена широта места.
По вставке в эту формулу величин, полученных наблюдениями, и по выполнении всех вычислений получится высота (Z) одной местности над другой в метрах. Есть другая формула, выведенная Бесселем и пополненная Плантамуром; еще одну предложил Бабине. Вообще очень многие ученые старались улучшить способы вычисления высоты места на основании наблюдений Барометрического нивелирования. Все подобные способы и формулы названы гипсометрическими. Они послужили для определения высот очень многих гор, но сравнения найденных так. обр. чисел с определенными точным тригонометрическим путем показали, что гипсометрические формулы приводят к ошибкам, которые невелики только в случае близости с