Прогнозирование последствий чрезвычайных ситуаций на гидротехнических сооружениях Павловской ГЭС
Дипломная работа - Безопасность жизнедеятельности
Другие дипломы по предмету Безопасность жизнедеятельности
?арушения сплошности материала происходит расслоение тела сооружения при сейсмических воздействиях.
Поскольку сооружение и его элементы, в том числе всякие выступы сооружения в плане, плохо сопротивляться крутящим усилиям, следует стремиться проектировать сооружение так, чтобы массы в нем были распределены симметрично относительно центра тяжести всего сооружения, что практически в известной мере достигается упрощением формы сооружения в плане (приближением к форме квадрата). Если достигнуть этого трудно, то рекомендуется разбивать сооружение на отдельные отсеки, имеющие указанное выше простейшее очертание в плане.
Всякие горизонтальные усилия, в том числе сейсмические, распределяются между отдельными несущими элементами сооружения или здания (опоры моста, контрфорсы в железобетонных плотинах, поперечные стены и простенки каменных зданий и т.п.) пропорционально их жесткости. Следовательно, во избежание перегрузки отдельных элементов сооружения необходимо проектировать его так, чтобы в отношении жесткости его элементы не отличались резко друг от друга.
Всякое сооружение представляет собой пространственную систему, часто состоящую из связанных между собой более простых несущих элементов. Поэтому для обеспечения сохранности сооружения при землетрясении важно обеспечить прочность связей, например, сопряжений между капитальными стенами каменного здания. Кроме того, следует стремиться к тому, чтобы связи для смягчения динамического воздействия землетрясения обладали пластическими свойствами.
В соответствии с указанными принципами целесообразно при проектировании и разработке технологии строительного производства предусматривать ряд антисейсмических мероприятий.
Необходимая прочность и монолитность материала, например, каменной кладки, достигается применением прочных камней правильной формы, при тщательном соблюдении правил перевозки, с использованием растворов, обладающих хорошим сопротивлением нормальному и тангенциальному воздействиям. Предусматривают меры против образования в швах кладки усадочных трещин, для придания раствору пластичности в него вводят специальные добавки.
Для достижения однородности строения тела сооружения стремятся применить один и тот же материал в пределах каждого отсека сооружения, обеспечивать необходимую перевязку, например, нового бетона со старым в швах бетонирования сооружения. Чтобы обеспечить сохранность связей между несущими элементами (например, между стенами каменных зданий), армируют углы здания путем укладки стальных стержней в горизонтальных швах кладки. Для разбивки здания или сооружения на отдельные отсеки в плане устраивают антисейсмические швы, совмещенные с осадочными и температурными швами.
В целях обеспечения оптимальной пространственной жесткости рекомендуется между несущими элементами делать проемы и простенки одинаковой ширины, а поперечные стены сквозными, располагая их, по возможности, на равных расстояниях друг от друга. Для равномерного распределения сейсмических усилий между несущими элементами здания рекомендуется перекрытия делать монолитными и жесткими в такой мере, чтобы они представляли собой неизменяемые горизонтальные диафрагмы.
Обеспечение прочности и, в известной мере, пластического деформирования сопряжений стен здания достигается, кроме того, устройством замкнутых железобетонных антисейсмических поясов, укладываемых по всему периметру капитальных стен. Наконец, требуется замоноличивание сборных железобетонных конструкций, что можно осуществить путем укладки в стыках специальных стержней арматуры или закладных стальных частей с последующим соединением их петлями или электросваркой; при этом должна быть обеспечена равнопрочность сечения сборного элемента и стыка замоноличивания.
Сейсмические нагрузки на гидротехнические сооружения.
Сейсмические нагрузки на гидросооружения можно разделить на следующие:
- сейсмические инерционные нагрузки;
- сейсмическое давление воды на напорную грань сооружения (плотина, перемещаясь при землетрясении в сторону верхнего бьефа, будет встречать сопротивление воды и тем самым испытывать давление гидродинамического характера);
- сейсмическое давление грунта на сооружения типа подпорной стенки (сейсмические инерционные силы, возникающие в грунте засыпки в связи с возникновением активного давления на стенку);
- сейсмическое давление воды в напорном сооружении
Мероприятия по обеспечению сейсмостойкости земляных плотин.
Земляные плотины находят широкое применение в сейсмических районах главным образом вследствие возможности использования местных строительных материалов, а также механизации строительного производства.
Для обеспечения сейсмостойкости плотины необходимо, кроме осуществления раiета ее на сейсмостойкость, предусмотреть специальные мероприятия в части ее конструкции и технологии строительных работ, что возможно путем рассмотрения физической картины воздействия землетрясения и анализа эмпирических данных. [18, с. 24-150]
Так как плотины гидротехнических сооружений Павловской ГЭС являются грунтовыми, то о мероприятия по обеспечению сейсмоустойчивости земляных плотин буду подробно рассмотрены в разделе 7.
Мероприятия по обеспечению сейсмостойкости плотин из каменной наброски и кладки насухо.
Набросные плотины имеют много общего с земляными с точки зрения конструкции, а также условий работы, п
Copyright © 2008-2014 geum.ru рубрикатор по предметам рубрикатор по типам работ пользовательское соглашение