Проверка логического следования методом резолюции
Курсовой проект - Компьютеры, программирование
Другие курсовые по предмету Компьютеры, программирование
?ограммы на языке Haskell
cont :: String -> Stringx
|(head x == ~) = tail x
|otherwise = "~" ++ x:: String -> String -> Boolx y = if (( "~" ++ x == y) || ( "~" ++ y == x)) then True else False:: String -> [String] -> Boolx [] = Falsex y = if (srav x (head y) == True) then True else contrar x (tail y):: Eq(a)=> [a]->[[a]][] = [[]](x:xs) = scep x (perestanovka xs):: Eq(a)=> a->[[a]]->[[a]]x [[]] = [[x]]x [] = []x (h:t) = (rev x h)++(scep x t):: a->[a]->[[a]]x [] = []x h = [(x:h),(reverse (x:h))]:: [String] -> [String] -> [String][] x = xx y
|(x == []) = x
|(not (elem (head x) y)) && (not (contrar (head x) y))
= (head x) : soed (tail x) y
|contrar (head x) y = soed (tail x) (delete (cont (head x)) y)
|otherwise = soed (tail x) y:: [[String]] -> [String][] = True(x:xs) = pr x xsx (y:ys)
|x == [] = True
|ys == [] = if (soed x y) == [] then True else False
|otherwise = pr (soed x y) ys[] = Falsex
|nachprov (head x) = True
|otherwise = prov (tail x)x = prov (perestanovka x)