Проблеми екології та шляхи їх вирішення

Информация - Экология

Другие материалы по предмету Экология

?, створених людиною, у природних екосистемах елементи керування розосереджені усередині самої системи й тому процес регулювання й керування в них відбувається не із зовнішнього спеціального органа керування, як у технічних кібернетичних системах.

Відповідно до кібернетичних принципів, усякий процес керування повязаний з передачею й перетворенням інформації. Для стійкого динамічного функціонування системи необхідно, по-перше, наявність прямих сигналів, що несуть інформацію від керуючого до виконавчого пристрою, по-друге, зворотних сигналів, які інформують керуючий пристрій про виконання команд. Одержавши такі сигнали, керуючий пристрій віддає команду про коректування системи, якщо її положення відхиляється від заданого або встановленого. Саме таким способом здійснюється автоматичне регулювання не тільки в кібернетичних системах, але й у живих організмах. У фізіології цей спосіб підтримки динамічної рівноваги був сформульований американським фізіологом Уолтером Кенноном (1871-1945) у вигляді принципу гомеостазу, відповідно до якого всі найважливіші параметри організму (температура тіла, частота пульсу й подиху, склад крові й кровяний тиск і ін.) підтримуються на постійному рівні завдяки зворотним сигналам, що надходять із органів у головний мозок.

Кібернетика узагальнила це положення у вигляді принципу зворотного звязку. Неважко зрозуміти, що зазначений принцип пояснює лише процес досягнення й збереження динамічної рівноваги в будь-якій системі, але для того щоб зрозуміти, як відбуваються еволюція й розвиток систем, необхідно визнати виникнення змін у стані й структурі систем. А для цього варто ввести принцип позитивного зворотного звязку, відповідно до якого безперервні впливи на систему, поступово накопичуючись, приводять до руйнування колишніх звязків між її частинами й виникненню нової її структури.

В екосистемах живої природи дія цих принципів здобуває більше складний характер, оскільки, як ми бачили, що регулюють центри в них дифузні, або розподілені усередині всієї системи, а наявність надмірності, коли та сама функція виконується декількома компонентами, забезпечує необхідну стабільність системи. Ця стабільність залежить від безлічі умов, але визначальні серед них - ступінь опору зовнішнього середовища й ефективність роботи керуючих механізмів самої системи. Для більше конкретної характеристики стабільності екосистем звичайно вводять поняття резистентної стійкості, що визначається як здатність системи пручатися зовнішнім навантаженням і залишатися при цьому стійкій. Поняття пружної стійкості характеризує здатність системи швидко відновлювати свою стійкість. При сприятливих умовах зовнішнього середовища екосистеми звичайно підвищують свою опірність ускладненням внутрішньої структури. Раптові й випадкові зміни зовнішнього середовища (наприклад шторми) можуть різко знизити стійкість екосистеми й навіть зруйнувати її. Таким чином, тісний взаємозвязок і взаємодія між живими організмами й навколишнім середовищем являють собою характерну рису всіх екосистем. Хоча окремий організм, будучи відкритою системою, також взаємодіє з оточенням, проте взаємодія екосистеми із середовищем має більше ефективний і сталий характер.

Ця особливість проявляється насамперед у досягненні більшої стабільності функціонування й розвитку екосистем у порівнянні з окремими організмами в результаті встановлення інформаційних звязків між окремими організмами в рамках системи, виникнення ієрархічних відносин між окремими її підсистемами, які приводять до ускладнення її структури. У звязку із цим ще раз варто підкреслити, що будь-яка екосистема, починаючи від популяції й кінчаючи екосферою, являють собою надорганізмений рівень організації живого в природі, що якісно відрізняється від окремого організму. Саме в результаті обєднання окремих організмів у рамках цілого, їхньої взаємодії один з одним екосистема здобуває нові, системні властивості, які відсутні в окремих організмів. Відповідно до цього міняються й різні відносини й звязки екосистеми з навколишнім середовищем. Найбільш важливими й по суті вирішальними є енергетичні звязки.

Якщо простежити процеси перетворення й одержання енергії в екосистемах, то не можна не прийти до того висновку, що зробив згадуваний вище Майєр, що затверджував, що життя є створення сонячного променя. Дійсно, промениста енергія Сонця за допомогою фотохімічного синтезу спочатку перетвориться зеленими рослинами в органічні сполуки, які згодом служать їжею для тварин, які харчуються рослинами, а останні у свою чергу - їжею для інших тварин. Крім того, задовго до цього органічна речовина, заготовлена протягом тисячоріч рослинами, як і самі рослини, особливо дерева, піддалися численним хімічним перетворенням і утворили те викопне паливо, що дотепер служить найважливішим джерелом енергії для суспільства.

В екосистемах відбувається постійне перетворення сонячної енергії в більше концентровані її форми спочатку автотрофними рослинами, а потім гетеротрофними тваринами й людиною. При цьому на кожній стадії перетворення енергії відбувається також її дисіпація, або розсіювання, у навколишній простір. Закон збереження енергії повністю вірний й до цих систем, тому що ніколи не спостерігалися випадки створення енергії з нічого. Енергія може лише перетворюватися з однієї форми в іншу, але вона ніколи й нікуди не зникає.

Другий закон термодинаміки, що у фізиці звичай?/p>