Проблема искусственного интеллекта

Информация - Философия

Другие материалы по предмету Философия



Вµ системы включают в себя огромные базы знаний, сформированные с помощью информации, получаемой от экспертов, т.е. специалистов в той области, для которой создавалась каждая система.

Манипуляция накопленными данными осуществляется в другой части экспертных систем, содержащей правила вывода. Сейчас такие системы с успехом используются в медицине, геологии, проектировании и многих других отраслях.

Для эффективной работы мощных систем ИИ необходима высокая скорость доступа к большим базам данных, а также высокое быстродействие. ЭВМ с обычной архитектурой не удовлетворяют этим требованиям. Обычные последовательные

методы решения задач уступают место методам параллельной обработки, когда несколько процессоров независимо друг от друга выполняют различные части одной программы, или выполняют одинаковые действия над различными частями большого массива данных. Для этого применяются средства от многопроцессорных компьютеров, многомашинных кластеров, до специализированных параллельных процессоров и транспьютеров. Однако в последние годы наблюдается тенденция к использованию массово производящихся, и как следствие дешевых, процессоров для объединения в большие вычислительные комплексы.

В системах искусственного интеллекта человеческие знания, необходимые для решения задач ИИ, должны быть представлены и записаны в форме, пригодной для последующей обработки на компьютере. Сложность заключается в том, что многие аспекты знаний изменяются в зависимости от условий и с трудом поддаются описанию, оставаясь при этом очевидными для человека. Знания должны храниться в системах ИИ в некоторой обобщенной для данной предметной области форме,

позволяющей использовать выбранное представление в любой возможной ситуации. Для хранения знаний требуется большая область памяти, и, кроме того, значительное время уходит на их предварительную обработку. Это очевидное условие может быть упущено при разработке системы.

Многие аспекты ИИ связаны с развивающейся в настоящее время наукой робототехникой. Идея создания разумного робота, способного учиться на собственном опыте, представляет собой одну из центральных проблем ИИ. Такой робот может обладать способностью к ведению диалога на естественном языке

и уметь решать задачи, требующие инициативы и некоторой оригинальности мышления1. Для этого требуется некоторое предварительное обучение робота, в результате которого он мог бы в отличие от используемых сейчас промышленных

роботов выполнять целенаправленные и заранее незапрограммированные действия.

В течение многих лет идеи ИИ серьезно не рассматривались. Это происходило отчасти благодаря чрезмерному оптимизму некоторых теоретиков, а также из-за появления ряда сенсационных публикаций по этому предмету, впоследствии оказавшихся во многом несостоятельными.

Идея аппаратно-программных моделей человеческого мозга вызывала насмешки, а в сфере технического производства стали избегать разработок, связанных с ИИ, так как результаты их внедрения явно не соответствовали обещаниям. Эта в полном смысле слова плачевная ситуация в настоящее время изменилась к лучшему благодаря новейшим достижениям в разработке аппаратуры и программного обеспечения.

3.3 НЕЙРОСЕТИ

Идея нейронных сетей родилась в ходе исследований в области искусственного интеллекта, а именно в результате попыток воспроизвести способность нервных биологических систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга. Основной областью исследований по искусственному интеллекту в 60-80е годы были экспертные системы. Такие системы основывались на высокоуровневом моделировании процесса мышления (в частности, на его представ-

лении как манипуляций с символами). Скоро стало ясно, что подобные системы, хотя и могут принести пользу в некоторых областях, не охватывают некоторые ключевые аспекты работы человеческого мозга. Согласно одной из точек зрения, причина этого состоит в том, что они не в состоянии воспроизвести структуру мозга. Чтобы создать искусственный интеллект, необходимо построить систему с похожей архитектурой.

Мозг состоит из очень большого числа (приблизительно 1010)нейронов, соединенных многочисленными связями (в среднем несколько тысяч связей на один нейрон, однако это число может сильно колебаться). Нейроны - это специальные клетки, способные распространять электрохимические сигналы. Нейрон имеет разветвленную структуру ввода информации (дендриты), ядро и разветвляющийся выход (аксон). Аксоны клетки соединяются с дендритами других клеток с помощью синапсов. При активации нейрон посылает электрохимический сигнал по своему

аксону. Через синапсы этот сигнал достигает других нейронов, которые могут в свою очередь активироваться. Нейрон активируется тогда, когда суммарный уровень сигналов, пришедших в его ядро из дендритов, превысит определенный уровень (порог активации).

Интенсивность сигнала, получаемого нейроном (а, следовательно, и возможность его активации), сильно зависит от активности синапсов. Каждый синапс имеет протяженность, и специальные химические вещества передают сигнал вдоль него. Один из самых авторитетных исследователей нейросистем, Дональд Хебб, высказал постулат, что обучение заключается в первую очередь в изменениях силы синоптических связей. Например, в классическом опыте. Павлова каждый раз перед кормлением собаки звонил колок

Copyright © 2008-2014 geum.ru   рубрикатор по предметам  рубрикатор по типам работ  пользовательское соглашение