Пристрої реєстрації інформації

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

тономних пристроїв

Розєм IDE на системній платі в багатьох компютерах являє собою просто варіант розєму шини розширення. У стандартному варіанті ATA IDE використовуються розєм з 40 контактами з можливих 98, наявних у розємі 16-розрядної шини ISA. Із усього набору сигнальних ліній шини до розєму IDE підведені тільки ті, які необхідні для роботи стандартного контролера жорсткого диска компютерів XT й AT. Наприклад, для контролера жорсткого диска в компютері AT потрібна лінія IRQ 14, тому на IDE-розємі системної плати AT виведена тільки ця лінія IRQ. На розємі системної плати компютера XT виведена тільки лінія IRQ 5, до якого й підключений контролер. Зверніть увагу, що навіть якщо інтерфейс АТА підключений до мікросхеми South Bridge і працює на частоті шини PCI, то розведення й призначення контактів не змінюється.

Головна перевага IDE-накопичувачів їх низька вартість. Оскільки для них не потрібний окремий контролер, кількість кабелів і розємів, необхідних для підключення жорсткого диска, виявляється істотно меншою, ніж у стандартному варіанті жорсткого диска з автономним контролером.

У більшості випадків у системі повинен бути встановлений IDE-накопичувач того типу, що відповідає шині компютера. Інакше кажучи, XT IDE-накопичувачі працюють тільки в компютерах класу XT з розємами 8-розрядної шини ISA, ATA IDE-накопичувачі можна встановлювати тільки в компютерах класу AT з розємами 16-розрядної шини ISA або EISA, a MCA IDE-накопичувачі придатні тільки для систем із шиною МСА. Правда, можливі й інші варіанти. У більшості нових компютерів розєм АТА встановлено безпосередньо на системній платі. Якщо він відсутній, то для підключення до компютера АТА IDE-накопичувача можна використати додаткову плату адаптера. Звичайно на такій перехідній платі немає нічого, крім двох розємів (98-контактного друкованого розєму шини й 40-контактного розєму IDE) і набору провідників. Ці плати не є контролерами, тому що останні вже убудовані в жорсткі диски. Правда, на деяких з них монтуються додаткові пристрої, наприклад спеціалізована ROM BIOS або кеш-память.

 

5.4 Способи кодування даних в HDD

 

Дані на магнітному носії зберігаються в аналоговій формі. У той же час самі дані представлені в цифровому виді, тому що є послідовністю нулів й одиниць. При виконанні запису цифрова інформація, надходячи на магнітну головку, створює на диску магнітні домени відповідної полярності. Якщо під час запису на головку надходить позитивний сигнал, магнітні домени поляризуються в одному напрямку, а якщо негативний у протилежному. Коли міняється полярність записуваного сигналу, відбувається також зміна полярності магнітних доменов.

Якщо під час відтворення головка реєструє групу магнітних доменов однакової полярності, вона не генерує ніяких сигналів; генерація відбувається тільки тоді, коли головка виявляє зміну полярності. Ці моменти зміни полярності називаються зміною знака. Кожна зміна знака приводить до того, що головка, що зчитує, видає імпульс напруги; саме ці імпульси пристрій реєструє під час читання даних. Але при цьому головка, що зчитує, генерує не зовсім той сигнал, що був записаний; насправді вона створює ряд імпульсів, кожний з яких відповідає моменту зміни знака.

Якщо дані й синхросигнал передаються по одному каналі, то можна здійснити їх взаємну часову привязку при передачі між будь-якими двома пристроями. Найпростіший спосіб зробити це перед передачею групи даних послати синхронізуючий сигнал. Стосовно до магнітних носіїв це означає, що, наприклад, група, що містить один біт інформації, повинна починатися із зони зміни знака, що виконує роль заголовка. Потім треба (або не треба) здійснити перехід, залежно від значення біта даних. Закінчується група ще однією зоною зміни знака, що одночасно є стартовою для наступної групи. Перевагою цього методу є те, що синхронізація не порушується навіть при відтворенні довгих ланцюжків нулів (або одиниць), а недоліком те, що додаткові зони зміни знака, необхідні тільки для синхронізації, займають місце на диску, що могло б бути використано для запису даних.

Хоча розроблено безліч найрізноманітніших методів, на сьогоднішній день реально використовуються тільки три з них:

частотна модуляція (FM);

модифікована частотна модуляція (MFM);

кодування з обмеженням довжини поля запису (RLL).

Метод кодування FM (Frequency Modulation частотна модуляція) був розроблений раніше інших і використовувався при записі на гнучкі диски так називаної одинарної щільності (single density) у перших ПК. Ємність таких однобічних дискет становила всього 80 Кбайт. В 70-і роки запис по методу частотної модуляції використовували в багатьох пристроях, але зараз від нього повністю відмовилися.

Основною метою розроблювачів методу MFM (Modified Frequency Modulation модифікована частотна модуляція) було скорочення кількості зон зміни знака для запису того ж обсягу даних у порівнянні з FM-кодуванням і відповідно збільшення потенційної ємності носія. При цьому способі запису кількість зон зміни знака, використовуваних тільки для синхронізації, зменшується. Синхронізуючі переходи записуються тільки в початок групи з нульовим бітому даних і тільки в тому випадку, якщо йому передує нульовий біт. У всіх інших випадках синхронізуюча зона зміни знака не формується. Завдяки такому зменшенню кількості зон зміни знака при тій же припустимій щільності їхнього розміщення на диску, інформаційна ємність у порівнянні із записом по методу FM подвоюється. От чому диски, записані по методу MFM, часто н?/p>