Принципы, лежащие в основе метода капиллярного электрофореза

Информация - Химия

Другие материалы по предмету Химия

Санкт-Петербургский Государственный Университет

Химический факультет

 

 

 

 

 

 

 

 

 

 

 

Реферат на тему: Принципы, лежащие в основе метода капиллярного электрофореза

Дисциплина: Принципы и концепции современной химии

 

 

 

 

 

 

 

 

 

 

 

 

Санкт-Петербург

год

Введение

 

Капиллярный электрофорез - это метод анализа сложных смесей, использующий электрокинетические явления - электромиграцию ионов и других заряженных частиц и электроосмос - для разделения и определения компонентов. Эти явления возникают в растворах при помещении их в электрическое поле, преимущественно высокого напряжения. Если раствор находится в тонком капилляре, например в кварцевом, то электрическое поле, наложенное вдоль капилляра, вызывает в нем движение заряженных частиц и пассивный поток жидкости, в результате чего проба разделяется на индивидуальные компоненты, так как параметры электромиграции специфичны для каждого сорта заряженных частиц. В то же время такие возмущающие факторы, как диффузионные, сорбционные, конвекционные, гравитационные и т.п., в капилляре существенно ослаблены, благодаря чему достигаются рекордные эффективности разделений.

Принципы метода капиллярного электрофореза

 

Метод капиллярного электрофореза (КЭФ) появился сравнительно недавно. Первые упоминания о нем относятся к середине 70-х годов XX века. Затем, в 80-е были созданы и запущены в серийное производство первые приборы, и, наконец, в 90- е годы прокатился бум практического использования этого метода в аналитических лабораториях мира наряду с другими инструментальными методами. Надо заметить, что основные закономерности электрофореза (как движения заряженных частиц в электрическом поле в среде электролита) были известны уже в конце XIX века. Но лишь спустя столетие технологии позволили изготавливать кварцевые капилляры очень малых (на уровне десятков микрон) и, главное, равномерных внутренних диаметров прозрачных в ультрафиолетовой области. К этому моменту был накоплен также значительный опыт по возможностям детектирования аналитических сигналов в потоке.

Аналитические методы, основанные на принципе электрофореза, были предложены Тиселиусом в 1937 году. За разработку метода электрофоретического разделения макромолекул он был удостоен Нобелевской премии в 1948 году.

Метод КЭФ основан на принципе разделения компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора (около 2 нл) вводят в капилляр, предварительно заполненный подходящим буфером - электролитом. После подачи к концам капилляра высокого напряжения (до 30 кВ) компоненты смеси начинают двигаться по капилляру с разной скоростью, зависящей в первую очередь от заряда и массы (точнее - от величины ионного радиуса), и соответственно в разное время достигают зоны детектирования. Полученная последовательность пиков называется электрофореграммой, при этом качественной характеристикой вещества является параметр удерживания (время миграции), а количественной (после построения градуировочной зависимости) - высота или площадь пика, пропорциональная концентрации вещества.

 

Двойной электрический слой

 

В методе КЭФ используется принцип свойств поверхности раздела двух фаз - жидкости и твердого тела, свойств вязкости жидкости и свойств ее ионной электропроводности.

 

Рис. 1 - Схема процессов, происходящих на поверхности кварца: а) ювенильная (свежесозданная) поверхность кварца; б) образование силанольных групп на поверхности кварца; в) диссоциация силанольных групп в водном электролите; г) гидратация образовавшихся ионов; д) связывание части катионов с поверхностью, формирование двойного электрического слоя

 

На границе раздела двух фаз - внутренней поверхности кварцевого капилляра и водного раствора электролита, заполняющего капилляр, происходят следующие процессы. На свежеобразованной (ювенильной) поверхности плавленого кварца (SiO2) находятся главным образом силоксановые группы (рис. 1а). При контакте с парами воды или водными растворами силоксановые группы, обладающие двойными связями, оказываются неустойчивыми и, присоединяя молекулу воды, образуют силанольные группы (рис. 1б). При контакте поверхности кварца с водными растворами, силанольные группы диссоциируют с отщеплением ионов Н+ (рис. 1в). Степень диссоциации зависит от температуры и состава водного раствора, в частности от величины рН. При рН> 2,5 на поверхности кварца образуются диссоциированные силанольные группы, которые создают отрицательный поверхностный заряд.

Диссоциированные ионы, находящиеся как на кварцевой поверхности, так и в объёме электролита, гидратируются (рис. 1г). За счёт сил кулоновского взаимодействия, противоположно заряженные гидратированные ионы, находящиеся на поверхности и в объёме жидкости, взаимно притягиваются. Действующие при этом силы настолько велики, что ионы (часть катионов и остатки силанольных групп) частично теряют гидратирующую воду. В результате этого, первый слой катионов, непосредственно прилегающий к поверхности, теряет подвижность, связывается (рис. 1д). Поскольку "пушистые" гидратированные катионы не могут все разместиться в виде монослоя и полностью компенсировать отр