Применение магнетронных генераторов большей мощности в радиолокационных системах

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



? поля пространственный заряд может значительно увеличиться. Однако строгое решение задачи магнетрона с учетом пространственного заряда наталкивается на большие трудности. Многие важные свойства магнетронов могут быть рассмотрены независимо от присутствия и распределения пространственного заряда.

Рисунок 1.2 - К раiету движения электронов в цилиндрическом и плоском магнетронах со сплошным анодом в статистическом режиме. Электрон находится в точке А

Электроны эмитируются катодом с очень малыми начальными скоростями, поэтому величиной начальной скорости в статистическом режиме магнетрона можно сразу пренебречь. Однако при рассмотрении других ламп СВЧ со скрещенными электрическими и магнитным полями полезно общее решение, учитывающее начальную скорость электрона, начавшего свое движение из произвольной точки в пределах пространства взаимодействия. Учет начальных скоростей необходим также при анализе сортировки электронов в магнетронных генераторах в присутствии колебаний.

Раiеты движения электронов производится с наиболее простой плоской системы, изображенной на рис. 1.2, б. Рассмотрение плоского магнетрона важно не только с точки зрения простоты математического решения. Большинство современных магнетронов имеют катоды большого диаметра, что позволяет приближенно заменить катод и анод параллельными плоскостями.

1.2 Условия самовозбуждения

Рассмотрим сначала случай, когда отношение радиусов катода и анода магнетрона близко к единице, т. е. система электродов близка к плоской. Примем, что условием отдачи электронами максимальной энергии высокочастотному полю является совпадение фазовой скорости бегущей волны и средней скорости движения электронов в отсутствие колебаний. При этом всякое первоначальное колебание, возникающее в анодном блоке магнетрона, должно нарастать до тех пор, пока не начнут действовать ограничивающие нелинейные эффекты.

Используем уравнение, определяющее фазовую скорость волны -вида -й пространственной гармоники. Чтобы получить условие усредненного синхронизма между электронами и волной, вместо радиуса анода rа подставим средний радиус пространства взаимодействия, равный

. (1.1)

Таким образом, средняя фазовая скорость волны в пространстве взаимодействия составляет:

. (1.2)

Средняя скорость движения электронов равна . Отсюда условие синхронизма может быть записано в виде:

. (1.3)

В рассматриваемой системе напряженность постоянного электрического поля можно выразить в виде Подставляя эту величину в предыдущее уравнение и учитывая, что генерируемая частота определяется в основном резонансной частотой данного вида колебаний, т.е. что , имеем:

(1.4)

Согласно этому уравнению анодное напряжение, при котором должно происходить самовозбуждение многорезонаторного магнетрона, для каждого вида колебаний при фиксированном номере гармоники линейно связано с индукцией магнитного поля. Отношение есть величина постоянная для данного магнетрона при заданных значениях и .

На рисунке 1.3, а построены соответствующие графики для трех видов колебаний 8-резонаторного магнетрона при Здесь же построена парабола критического режима.

Рисунок 1.3 - Самовозбуждение магнетрона: а ) для упрощенного случая при N=8, б) для -вида колебаний

Прямые, определяемые уравнением (1.4), проходят через начало координат и пересекают критическую параболу. С физической точки зрения понятно, что при генерация колебаний типа бегущей волны невозможна: все электроны попадают на анод не позднее чем через половину периода циклоидального колебания. Поэтому условиям самовозбуждения отвечают лишь участки прямых, выделенные на рисунке 1.3, а сплошными линиями и лежащие ниже параболы критического режима.

Рассмотренные графики самовозбуждения не могут претендовать на большую точность, а можно лишь установить, что для каждого вида колебаний существуют оптимальные соотношения между постоянным анодным напряжением и индукцией магнитного поля. Это не означает, однако, что генерирование колебаний невозможно в точках плоскости (f/a, В), не лежащих на указанных прямых. Если увеличивать анодное напряжение при неизменной индукции магнитного поля, то генерируемая мощность на данном виде колебаний должна переходить через максимум и уменьшаться при удалении от прямой, определяемой уравнением (1.4). При дальнейшем увеличении напряжения /а могут быть достигнуты условия синхронизма с полем волны следующего вида, имеющего более низкий номер п. Естественно предположить, что существует промежуточная область неустойчивой генерации, где небольшие изменения анодного напряжения и постоянного анодного тока приводят к скачкообразному переходу с одного вида колебаний на другой.

Отвлекаясь от возбуждения колебаний на пространственных гармониках, отметим, что -вид колебаний требует для своего возбуждения наименьшего анодного напряжения. Это свойство -вида играет большую роль, особенно при работе магнетронов в импульсном режиме. Одновременно можно сделать вывод, что -вид отделен от других видов колебаний не только по частоте, но и по величине анодного напряжения.

1.3 К.П.Д. магнетрона

Трудности, связанные с прямым вычислением отдаваемой электронами мощности, настолько велики, что в настоящее время не существует строгого раiета электронного к. п. д.