Применение лазеров в связи и локации

Информация - Радиоэлектроника

Другие материалы по предмету Радиоэлектроника

а лазера составляет 0,05 град. Это позволяет установить устойчивую связь на большие расстояния между пунктами, расположенными на поверхности земли.

Импульсная оптическая система связи может применяться не только на расстоянии в пределах прямой видимости. Узкий световой пучок отражается облаками с хорошо определенными контурами, сооружениями и спутниками при связи за пределами прямой видимости.

С помощью такой системы оптической связи можно установить связь и через газовую плазму, в то время как через нее электромагнитные волны радиочастотного диапазона не проходят.

Система лазерной связи может так же использоваться для передачи информации через поверхность раздела воздух - море. Состояние поверхности моря, переменчивое из-за волн, характеризуется составляющими, частота которых находится в диапазоне волн радиосвязи. Поэтому трудно передавать сигналы, используя в качестве несущей электромагнитную волну, так как отношение сигнал/шум передачи сильно уменьшается.

При использовании в качестве источников световой несущей рубиновых лазеров следует учитывать, что они имеют значительно больший уровень шумов, чем газовые лазеры непрерывного действия. Достоинство рассматриваемой системы в том, что благодаря использованию помехоустойчивой импульсно-кодовой модуляции она допускает значительно больший уровень шума как в передающем, так и в приемном устройстве.

Как уже отмечалось, на работу наземных оптических линий связи значительное влияние оказывают атмосферные условия, ухудшающие параметры оптических линий. Воздействие атмосферы приводит к ослаблению энергии излучения и искажениям оптических сигналов при передаче информации. Это выражается во флуктуациях амплитуды и фазы, искажениях фронта волны, изменениях поляризации и т. д.

Ослабление энергии излучения обусловлено рассеянием из-за оптических неоднородностей. В результате наблюдаются преломление, отражение и дифракция оптических волн. Кроме того, газы и взвешенные частицы сами могут быть источниками излучения, что приводит к увеличению уровня шума. Существенное ослабление энергии излучения лазера происходит также из-за поглощения. Поглощение электромагнитных волн имеет избирательный характер. При этом даже в области прозрачности в отдельных участках спектра наблюдается значительное поглощение.

Известный метод повышения устойчивости оптических линий связи против метеорологических условий дублирование передачи по нескольким направлениям. Эффективным методом борьбы с влиянием избирательного поглощения является одновременное использование для передачи информации лазерного излучения с различными длинами волн, лежащих в окнах прозрачности атмосферы. Для уменьшения избирательных поглощений, обусловленных тонкой структурой спектра, можно использовать близкие по частоте световые несущие в пределах полосы частот окна прозрачности.

Весьма перспективно использование оптических линий связи в космосе.

При оптической связи на небольшие расстояния не обязательно расположение передатчика и приемника строго на одной линии. Это возможно при расширении апертуры луча. С этой целью в предлагаемой системе использован пассивный рефлектор-модулятор, который делает установку некритичной к направлению прихода светового луча, т. е. позволяет устанавливать связь между двумя подвижными точками. Эта система связи устраняет возможность перехвата сообщения и воздействия на него нежелательным абонентом и является надежным средством оперативной и аварийной связи.

Рассматриваемая система, изображенная на рисунке 1.3, состоит из блока линз 1, лазера 2, расположенного в их фокальной плоскости, рефлектора 3, модулирующего световой луч и отражающего его в обратном направлении, а также большого собирающего зеркала 4 концентрирующего принятый луч на фотодетекторе 5. Рефлектор представляет собой пассивный модулятор и состоит из трехгранного уголкового отражателя с зеркальными внутренними поверхностями, одна (или более) из которых является оптически отражающей подвижной диафрагмой. Деформация этой диафрагмы под воздействием звуковых волн создает соответствующую модуляцию отражённого светового луча, благодаря которой модулирующий сигнал после усиления усилителем 6 выделяется на приёмной стороне приёмником 7.

Рисунок 1.3 - Оптическая система связи на малые расстояния

 

1.2 Модуляционные устройства для оптической связи

 

Модуляция одна из центральных проблем при создании систем связи оптического диапазона, так как эффективность последних во многом зависит от создания достаточно эффективных и сравнительно простых модуляторов когерентного света, получаемого от лазера. Чем шире полоса модуляции, тем больше объем передаваемой информации. Основные требования, предъявляемые к модуляторам когерентного света широкополосность, линейность модуляционной характеристики, большой динамический диапазон и экономичность в потреблении энергии.

Методы модуляции излучения оптических квантовых генераторов делятся на два класса: методы внешней модуляции и методы внутренней модуляции.

Под внешней модуляцией подразумевается воздействие на излученный свет вне самого лазера, под внутренней на луч лазера в процессе его генерации, т. е. воздействие на параметры автоколебательной системы лазера. Методы модуляции можно классифицировать по изменяемому параметру модулируемого сигнала. В оптических с?/p>