Потрійний інтеграл
Контрольная работа - Математика и статистика
Другие контрольные работы по предмету Математика и статистика
;
якобіан перетворення
.
З формули (8) отримуємо потрійний інтеграл у циліндричних координатах:
.(9)
Назва циліндричні координати повязана з тим, що координатна поверхня є циліндром, прямолінійні твірні якого паралельні осі .
При переході від прямокутних координат до сферичних
(рис. 4, б), які повязані з формулами
Рисунок 4 Координати: а) циліндричні; б) сферичні
;
,
якобіан перетворення
.
З формули (8) знаходимо потрійний інтеграл у сферичних координатах:
. (10)
Назва сферичні координати повязана з тим, що координатна поверхня є сферою. При обчисленні потрійного інтеграла в циліндричних чи сферичних координатах область , як правило, не будують, а межі інтегрування знаходять безпосередньо за областю , користуючись геометричним змістом нових координат. При цьому рівняння поверхонь та , які обмежують область , записують у нових координатах.
Зокрема, якщо область обмежена циліндричною поверхнею та площинами , то всі межі інтегрування в циліндричній системі координат сталі:
і не змінюються при зміні порядку інтегрування. Те саме буде у сферичних координатах у випадку, коли куля: або кульове кільце. Наприклад, якщо кульове кільце з внутрішньою сферою , то рівняння цієї сфери в сферичних координатах має вигляд
або
,
звідки . Аналогічно рівняння зовнішньої сфери, тому
.
У випадку, коли куля , у цій формулі слід покласти . Інших будь-яких загальних рекомендацій, коли необхідно переходити до тієї чи іншої системи координат, дати неможливо. Це залежить і від області інтегрування, і від підінтегральної функції. Іноді потрібно написати інтеграл у різних системах координат і лише після цього вирішити, в якій з них обчислення буде найпростішим.
Приклад
1. Обчислити інтеграл , якщо область обмежена поверхнями і .
Розвязання
Область є конусом (рис. 5).
Рисунок 5 Область
Рівняння конічної поверхні, яка обмежує область , можна записати у вигляді , а саму область подати таким чином: , де круг радіуса з центром . Тому даний потрійний інтеграл можна звести до послідовного обчислення трьох визначених інтегралів у прямокутних координатах:
.
Проте зручніше перейти до циліндричних координат . Тоді прообраз круга є прямокутник , прообраз конічної поверхні плоска поверхня , а прообраз області область . Якобіан переходу до циліндричних координат дорівнює , підінтегральна функція в циліндричних координатах дорівнює. Зводячи потрійний інтеграл за областю до послідовного обчислення трьох визначних інтегралів, отримаємо
Зазначимо, що розставлення меж інтегрування в циліндричних координатах, як правило, виконують, розглядаючи не область , а зміну циліндричних координат в області . Наочно видно, що в області змінна змінюється від до , при кожному значенні змінна змінюється від до , а для кожної точки області змінна змінюється в області від (значення в області ) до (значення на конічній поверхні).
4. Деякі застосування потрійного інтеграла
інтеграл потрійний обчислення змінний
1. Обчислення обємів. Якщо деяке тіло є обмеженою і замкненою
областю , що має обєм , то згідно з формулою (4)
.(11)
Застосування у механіці. Нехай обмежена замкнена область простору , яку займає деяке матеріальне тіло з густиною , де неперервна функція в області , тоді:
а)маса цього тіла
;(12)
б)моменти інерції тіла відносно координатних осей відповідно дорівнюють
. (13)
Моменти інерції тіла відносно координатних площин обчислюються за формулами
.(14)
Момент інерції тіла відносно початку координат
(15)
в) статичні моменти тіла відносно координатних площин обчислюються за формулами
;(16)
г) координати центра маси тіла визначаються за формулами
. (17)
Доведення формули (11), як уже зазначалося, випливає з означення потрійного інтеграла:
.