Поражающие факторы ядерного взрыва: воздействие на людей и объекты экономики
Информация - Безопасность жизнедеятельности
Другие материалы по предмету Безопасность жизнедеятельности
ты после облучения, а скрытый период вообще отсутствует. Пораженные погибают в первые дни после облучения.
Следует иметь в виду, что даже небольшие дозы излучения снижают сопротивляемость организма к инфекциям, приводят к кислородному голоданию тканей, ухудшению процесса свертывания крови.
Ориентировочные радиусы зон поражения для различных экспозиционных доз гамма-излучений в зависимости от мощностей взрывов ядерных боеприпасов в приземном слое приведены в табл. 1.2.
Таблица 1.2.
Экспозиционная доза, Гр (Р)Расстояние от центра взрыва, кмТротиловый эквивалент20 кт100 кт1 Мт5 Мт10 Мт5 (500)1,21,652,43,03,43 (300)1,41,82,63,23,62 (200)1,51,92,83,43,91 (100)1,62,13,03,64,20,5 (50)1,82,253,23,84,5
Радиационные повреждения. При воздушных (приземных) и наземных ядерных взрывах дозы проникающей радицации на тех расстояниях, где ударная волна выводит из строя здания, сооружения, оборудование и другие элементы производства, в большинстве случаев для объектов полиграфии являются безопасными. Но с увеличением высоты взрыва все большее значение в поражениях объекта приобретает проникающая радиация.
Проходя через материалы, поток гамма-квантов и нейтронов вызывает в них различные изменения. Так при дозах проникающей радиции в несколько сотых долей грея (несколько Р) засвечиваются фотоматериалы, находящиеся в светонепроницаемых упаковках, а при дозах в несколько единиц грея (сотни Р) выходит из стоя полупроводниковая радиоэлектронная аппаратура, темнеют стекла оптических приборов.
Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, элементах радиотехнической, электротехнической, оптической и другой аппаратуры.
Необратимые изменения в материалах вызываются нарушениями структуры кристаллической решетки вещества вследствие возникновения дефектов (в неорганических и полупроводниковых материалах), а также в результате прохождения различных физико-химических процессов. Такими процессами являются: радиационный нагрев, происходящий вследствие преобразования поглощенной энергии проникающей радиации в тепловую; окислительные химические реакции, приводящие к окислению контактов и поверхностей электродов; деструкция и сшивание молекул в полимерных материалах, приводящие к изменению физико-механических и электрических параметров; газовыделения и образование пылеобразных продуктов, которые могут вызвать вторичные факторы воздействий (взрывы в замкнутых объемах, запыление отдельных деталей приборов и т.д.). В результате радиакционного захвата нейтронов возможно образование примесей радиоактивных веществ. В процессе распада образовавшихся радиоактивных ядер происходит радиационное излучение, которое может воздействовать на электрические параметры элементов и схем, а также затруднять ремонт и эксплуатацию аппаратуры. Наиболее опасны по вторичному излучению изделия, изготовленные из материалов, содержащих бор, марганец, кадмий, индий, серебро и др.
Обратимые изменения как правило являются следствием ионизации материалов и окружающей среды. Они проявляются в увеличении концентрации носителя тока, что приводит к возрастанию утечки тока, снижению сопротивления в изоляционных, полупроводниковых, проводящих материалах и газовых промежутках. Обратимые изменения в материалах, элементах и аппаратуре в целом могут возникать при мощностях экспозиционных доз 1000 Р/с (10 Гр/с). Проводимость воздушных промежутков диэлектрических материалов начинает существенно увеличиваться при мощностях доз 10 000 Р/С (100 Гр/с) и более.
Проникающая радиация, проходя через различные среды (материалы), ослабляется. Степень ослабления зависит от свойств материалов и толщины защитного слоя. Нейтроны ослабляются в основном за счет взаимодействия с ядрами атомов.
На объектах, оснащенных электронной, электронно-технической и оптической аппаратурой, следует предусматривать меры по защите этой аппаратуры от воздействия проникающей радиации. Повышение радиационной стойкости аппаратуры можно достичь путем: применения радиационностойких материалов и элементов; создания схем, малокритичных к изменениям электрических параметров элементов, компенсирующих и отводящих дополнительные токи, выключающих отдельные блоки и элементы на период воздействия ионизирующих излучений; увеличения расстояния между элементами, находящимися под электрической нагрузкой; снижения рабочих напряжений на них; регулирования тепловых, электрических и других нагрузок; применения различного рода заливок, непроводящих ток при облучении; создания на объектах специальных защитных экранов (защитных толщ) для ослабления действия проникающей радиации на аппаратуру.
Доза проникающей радиации зависит от типа ядерного заряда, мощности и вида взрыва, а также от расстояния до центра взрыва. Проникающая радиация является одним из основных поражающих факторов при взрывах нейтронных боеприпасов и боеприпасов деления сверхмалой и малой мощности.
.2.4 Радиоактивное заражение местности
Радиоактивное заражение - это заражение поверхности земли, атмосферы, водоемов и различных предметов радиоактивными веществами, выпавшими из облака ядерного взрыва.
Радиоактивное заражение как поражающий фактор при наземном ядерном взрыве отличается масштабностью, продолжительностью воздействия, относительной скрытностью поражающего действия, снижением степени воздействия со временем (спад радиации во времени).
Источниками радиоактивного заражения являются: продукт?/p>