Анализ финансовых результатов на примере магазина

Информация - Бухгалтерский учет и аудит

Другие материалы по предмету Бухгалтерский учет и аудит

?нивается с табличными значениями d1 и d2, определенными по таблице с уровнем значимости и числом степеней свободы k = n: при dр > d2, то корреляция отсутствует.

Если построенная регрессионная модель адекватна и прогнозные оценки факторов достаточно надежны, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадет в интервал, образованный нижней и верхней границами.

 

 

3.2 Экономико математическое моделирование прибыли ГУСП Башхлебоптицепрома

 

В корреляционной матрице дается критическое значение коэффициента корреляции на уровне 90 % при двух степенях свободы:

уровень 90 % - это надежность получаемых результатов, она задается исследователем;

две степени свободы это количество исследуемых одновременно параметров.

Все коэффициенты корреляции, табличные значения которых, меньше критического значения коэффициента корреляции (+ 0,2920), принимается равным нулю, то есть корреляционная связь между переменными является не значимой. Качественная оценка коэффициентов корреляции осуществляется на основе шкалы Чеддока.

Проанализируем силу связи зависимой переменной Y с независимыми переменными Хi.

Целью данного исследования является построение лучшей модели для определения влияния составляющих затрат на изменение выручки от реализации товара на изменение прибыли, а также для прогноза прибыли на последующие 3 этапа, а именно на 3 месяца.

Для проведения исследования необходимы исходные данные. В данной задаче анализу подвергаются 7 составляющих затрат, с целью выявления их влияния на выручку от реализации товара.

Для проведения исследования по выявлению влияния составляющих затрат на выручку использовались данные бухгалтерского учета (журнал-ордер № , главная книга) ГУСП, представленные в таблице Статистика данных по ГУСП Башхлебоптицепрому ( см. приложение № 5 ). В качестве исходных данных необходимых для проведения исследования выбираем статьи издержек обращения по 44 счету, наиболее значимые для расчета данного показателя с экономической точки зрения (см. приложение 5) .

Таблица с исходными данными состоит из столбцов и строк. По столбцам отражается временной интервал. В качестве периода исследования берем период по месяцам с июля 1998 года по март 2000 года. Этот временной интервал позволяет прогнозировать с достаточным количеством точек необходимым для получения адекватной модели с достаточной степенью точности. По строкам отражаются исследуемые переменные:Y зависимая переменная, в нашем примере это показатель выпучки; Х независимые переменные, а именно это:

Х1 заработная плата;

Х2 аммортизация основных средств;

Х3 горюче-смазочные материалы;

Х4 услуги охраны

Х5 электро-энергия

Х6 ремонтные работы

Х7 запчасти

Все числовые данные представлены в тысячах рублей.

Прежде, чем построить модель, необходимо произвести предварительную обработку данных, которая включает в себя получение корреляционной матрицы (см. приложение 6).

Корреляционная матица есть квадратная матрица парных коэффициентов корреляции. Нумерация переменных соответствует приложению 5. Например, показатель 1 это Y, показатель 2 - это Х1 и так далее.

Для проведения исследования взяты составляющие издержек обращения, а именно: заработная плата, амортизация основных средств, ГСМ, охрана, электро-энергия, ремонтные работы, запчасти для автомашин за отчетный период.

В качестве временного интервала для исследования взят период с июля 1998 года по март 2000 года., т.е. после кризисный период , когда произошли большие изменения в экономике страны, повлекшие за собой изменения в экономике и финансах предприятий. Для исследования данный период был взят для того, чтобы не было искажений и скачков в результатах, а также потому, что данный период имеет достаточное количество точек для получения адекватной модели .

Для проведения исследования составляющих выручки от реализации товара на прибыль применялись корреляционный и регрессионный анализ. Выполнение расчетов производилось с использованием стандартного программного продукта СтатЭксперт . Исследование проводилось в 2 этапа:

Корреляционный анализ

Регрессионный анализ с прогнозом.

Корреляционный анализ:

Прежде чем построить модель необходимо провести предварительную обработку данных, которая включает в себя получение корреляционной матрицы исходных данных, используя коэффициенты парной корреляции. Результаты расчетов представлены в приложении 6.

Данная таблица есть корреляционная матрица, где по строкам и столбцам представлены исследуемые параметры, обозначенные как показатели 1,2,3,….11, нумерация которых соответствует порядку параметров, представленных в таблице , то есть показатель 1 есть выручка, показатель 2 заработная плата,….,показатель 8 запчасти.

В корреляционной матрице дается критическое значение на уровне 90 % при 2-х степенях свободы равный 0,2920. Это означает, что надежность получаемых результатов в исследовании составляет 90 %, а две степени свободы это количество исследуемых одновременно параметров. Критическое значение равное + 0,2920 используется для анализа таблицы . Коэффициенты корреляции , находящиеся в таблице , значение которых ниже 0,2920 (r ij< r i крит.) принимаются за величину равная нулю, то