Получение пурпуреосоли. Аммиакаты кобальта (III)
Курсовой проект - Химия
Другие курсовые по предмету Химия
о известных в то время случаев изомерии соединений диацидотетраминового типа. Наряду с этим она позволила предвидеть ряд новых случаев геометрической изомерии.
Прежде всего нужно было показать на опыте, что цистрансизомерия соединений диацидотетраминового типа действительно не зависит от химической природы координированных групп. С этого собственно и было начато. После установления координационной теории Вернер с учениками в течение нескольких лет синтезировал громадное количество геометрически изомерных соединений, главным образом кобальта и хрома. При этом с абсолютной очевидностью было показано, что, как этого и требует модель, цистрансизомерия. характерна не только для соединений диацидотетраминового тийа, но и вообще для соединений, содержащих комплексные ионы состава [Меа4Ь2]. Разумеется, совершенно не обязательно в этом случае, чтобы роль а играли именно нейтральные молекулы, а роль b кислотные остатки.
Судя по этой модели, можно было с уверенностью ожидать наличия такой изомерии не только для соединений типа |Go(NH3)4Cl2]X или [CoEn2(N02)2]X, но также и для соединений типа [CoEn2(NH3)2]X3 или [Сo(NH3)4Py2]X3. Чтобы дать представление о степени обоснованности этих следствий октаэдрической модели, приведем сводку изомерных рядов соединений кобальта, большинство которых было получено и изучено к 1913 г. К этому времени были известны следующие ряды изомерных соединений:
1) [Co(NH3)4(N02)2]X 7) [CoEnaNOaCl]X
2) [Сo(NH3)4Cl2]X 8) [CoEn2(ONO)2]X
3) Me[Co(NH3)4(S03)2] 9) [СоЕп2Вг2]Х
4) Me[Co(NH3)4(Cr04)2] 10) [CoEn2(H20)2]X3
5) [CpEnaChlX 11) [CoEn2(H20)(OH)]X
6) [CoEn2(N02b]X 12) [CoEn2(NH3)2]X3
13) [СоРп2С12]Х 21) [CoEna(NCS)NH8]X2
14) [CoEn2BrСl]X 22) [CoEn2N02NH3]X2
15) [GoEn2(NCS)Cl]X 23) [CoEn2H20(NCS)]X2
16) [GoEn2(NCS)Br]X 24) [CoEn2NH3H20]X3
17) [CoEn2(NCS)2]X 25) [CoEn2NH3OH]X2
18) [CoEn2(NGS)N02]X 26) [CoEnaNH3N03]X2
19) [CoEn2NH3Cl]X2 27) [CoEn(NH3)2Cl2]X
20) [CoEn2NH8Br]X2
Ряды З и 4 несколько отличаются от 1 и 2 тем, что во внутренней сфере находятся два двухвалентных кислотных остатка, из которых каждый занимает только одно координационное место. Заряд комплексного иона соответственно равен 1.
Ряд 8 изомерен с рядом 6. Различие между ними, действительно, обусловлено неодинаковым строением группы N02. Эта идея была, как уже известно, впервые высказана Иергенсеном .Однако каждый из рядов существует в двух геометрически изомерных модификациях.
Совершенно очевидно, что приведенного материала вполне достаточно, чтобы считать данное в координационной теории объяснение изомерии соединений типа [Mea4b2 ] строго обоснованным.
С 1913 г. число геометрически изомерных рядов еще значительно увеличилось. Существенно новое при этом заключается в том, что изомерия была обнаружена и на соединениях ряда других металлов, в частности на соединениях Pt(IV), Ir(III) и Ir(IV), не говоря уже о соединениях Сг(Ш).
Получены также геометрически изомерные производные Ru(III) и Rh(III). Для Ru(III) Глеу и Брейель в 1938 г. синтезировали производные [Ru(NH3)4Cl2]X и [Ni(NНз) 4Вг2]Х. Изомерные соединения родия долго не удавалось синтезировать. В 1955 г. Н. К. Пшеницыну и Г. А. Некрасовой удалось синтезировать две формы состава [Rh(C7H602N)3l (производные салицилальдоксима), которые, возможно, являются геометрическими изомерами, а в 1960 г. Басоло приготовил изомерные соли [RhEn2Cl2]X. В 1953 г. Бэйлар и Хенеган синтезировали неизвестный до их работы цис-изомер состава [PtEn2Cl2]Cl2 и доказали его конфигурацию путем расщепления на оптические антиподы.
В 1957 г. автор этой книги совместно с Л.В. Врублевской 7 получил геометрические изомеры соли [PtPn2Cl2]Cl2.
Изомерные ряды, о которых до сих пор шла речь, относились главным образом к соединениям тетраминового, пентаминового и гексаминового типов. Однако с точки зрения модели эта изомерия должна наблюдаться и у соединений других типов. Характерным примером геометрически изомерных соединений, относящихся к те-трацидодиаминовому типу, являются, например, уже давно известные производные четырехвалентной платины состава [Pta2X4] (где а нейтральная молекула, X одновалентный кислотный остаток). Известны многочисленные представители соединений этого типа с разными а и с разными X, и для всех них характерно наличие двух видоизменений, стоящих друг к другу в отношении цис-трапс-изомерии. Так, для частного случая, когда а NH3, а X С1, координационные формулы соответствующих изомеров представляются в виде:
Заслуживает внимания, что для тетрацидодиамминового ряда соединений кобальта соответствующая изомерия пока еще не обнаружена. Соли состава Me [Co(NH3)2(N02)4] пока известны только в одной форме. Представлялось бы весьма интересным обнаружить эту изомерию, которая безусловно должна существовать. Надо вообще сказать, что максимум внимания исследователей был до последнего времени направлен главным образом на изучение изомерии соединений, относящихся к диацидотетраминовому типу.
Ценность октаэдрической модели заключается в том, что она позволяет предусмотреть число и строение изомеров для всех случаев, когда состав комплексного иона известен. Если возьмем для примера какое-либо соединение, относящееся к типу [Меа3Ь3], то, оперируя с моделью, можно предвидеть, что такие соединения также должны существовать в виде двух геометрически изомерных модификаций.
Строение этих модификаций выражается следующими координационными формулами:
При попытке найти еще какое-нибудь третье взаимное расположение групп а и Ь, которое отличалось бы от двух только что приведенных, легко убедиться, что оно обязательно совпадает со, строением одного из приведенных изомеров, так что никаких других возможностей геоме