Полимерные композиты на основе диальдегилцеллюлозы и полигуанилинметакрилата

Курсовой проект - Химия

Другие курсовые по предмету Химия

анения восприимчивых тканей и клеток от адсорбции на них вирусных частиц, преду преждения миграции нового поколения вирусных частиц из инфицированных клеток и нарушения синтеза вирусов в восприимчивых клетках. Интерес к применению синтетических полимеров для вирусологических целей возник после того, как была установлена возможность ингибировании действия ферментов, размножения бактерий и развития опухолей под влиянием некоторых биологических и синтетических полимеров. По данным института Вирусологии им. Д.И. Ивановского АМН, защитным противовирусным эффектом обладают полимеры, содержащие гуанидиновую группировку, в частности, полисепт и фогуцид. В результате проведенных исследований было установлено, что эти вещества обладают сильным вирулицидным действием по отношению к вирусам герпеса простого, вируса СПИДА, вируса гепатита А, вируса тропической лихорадки: при 15-20 мин экспозиции 2% раствора препарата с вирусосодержащими жидкостями (при комнатной температуре) инфекционный титр вирусов снижается в 1000 и более раз.

Механизм защитного противовирусного действия синтетических полимеров, возможно, связан с блокадой ими поверхностных рецепторов клеток [26].

По сравнению с другими катионными полиэлектролитами использование гуанидинсодержащих биоцидных полимеров имеет еще одно положительное преимущество.

При использовании синтетических биоцидных полимеров следует учитывать их биодеградируемость в живом организме. В случае использования небиодеградируемых синтетических полимеров существенное значение имеет их молекулярная масса, поскольку полимеры с молекулярной массой выше 50000 не могут выводиться через почки, а накапливаются в почечных канальцах, вызывая выраженные токсические эффекты. В этом отношении биоцидный эффект гуанидиновых соединений физиологичен, и в живом организме имеются ферментные системы, способные вызывать деградацию этих соединений, предотвращая их кумуляцию [28].

 

1.2 Биологически активные полимеры

 

Известно, что биологически активные полимеры должны удовлетворять ряду требований:

  1. хорошо растворяться в воде и солевых растворах;
  2. быть биосовместимыми, не обладать высокой токсичностью, не подавлять иммунную систему;
  3. иметь небольшую скорость выведения и выводиться из организма после выполнения своей функции;

Все это накладывает определенные требования к их структуре, молекулярной массе и молекулярно - массовому распределению (ММР).

Чаще всего синтетические биологически активные полимеры представляют собой гибрид синтетического полимера-носителя с биологически активным веществом, Биологическая активность таких гибридных систем определяется в основном свойствами присоединенного к полимеру-носителю вещества.

Одним из способов получения водорастворимых биологически активных полимеров является синтез гидрофильных мономеров на основе гидрофобных биологически активных веществ (БАВ) и ионогенных ненасыщенных карбоновых кислот (акриловой, метакриловой и т.п.)

Метакриловая и акриловая кислота и их производные характеризуются значительной реакционной способностью в реакциях радикальной гомо- и сополимеризации. Производные метакриловой кислоты, содержащие химически активные функциональные группы, представляют собой перспективный ряд мономеров. Соответствующие им полимеры могут сохранять потенциал активности, являясь удобными носителями биологически активных веществ. Потребность в них применительно к самым разнообразным отраслям, начиная от техники и кончая медициной, естественно стимулирует и, несомненно, оправдывает необходимость изучения особенностей протекания процессов синтеза и механизма образования этого класса полимерных соединений [28, 29].

 

1.3 Строение целлюлозы

 

Целлюлоза - важнейший представитель полисахаридов, одного из классов природных полимеров, макромолекулы которых построены из элементарных звеньев (остатков) различных моносахаридов, соединенных между собой ацетальной (гликозидной) связью. Макромолекула целлюлозы состоит из остатков D-глюкозы - моносахарида, углеродный скелет молекулы которого содержит шесть атомов углерода. При этом элементарное звено имеет структуру шестичленного кислородсодержащего гетероцикла, а в образовании гликозидной связи между элементарными звеньями наряду с альдегидной группой, расположенной у первого углеродного атома одного элементарного звена, принимает участие гидроксильная группа у четвертого углеродного атома соседнего звена.

Важной характеристикой строения макромолекулярной цепи полисахаридов является не только направление гликозидной связи, но и ее конфигурация. Гликозидная связь в макромолекуле целлюлозы имеет (3-конфигурацию (обозначение, принятое для связи, имеющей противоположную пространственную ориентацию по сравнению с конфигурацией асимметрического углеродного атома С-5 в молекуле глюкозы). Гликозидные связи сравнительно легко подвергаются расщеплению под действием воды в присутствии кислотных катализаторов (процесс гидролиза). Это обстоятельство обусловливает относительную неустойчивость целлюлозы к действию водных растворов кислот. В то же время в условиях щелочного гидролиза гликозидные связи целлюлозы достаточно стабильны. Однако эта стабильность характерна лишь для систем, в которых отсутствует молекулярный кислород. Наличие же кислорода приводит к изменению механизма реакции - переходу от чистог