Побудова та принцип роботи плазмового та рідкокристалічного моніторів

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

 

 

 

 

 

 

 

 

 

 

 

 

 

Побудова та принцип роботи плазмового та рідкокристалічного моніторів

1. Побудова та принцип роботи плазмового монітора

 

Плазмові монітори це, як правило, монітори з дуже великою діагоналлю (40 60 дюймів), із зовсім пласким екраном, а самі монітори є дуже тонкими (товщина їх зазвичай не перевищує 10 см) і одночасно дуже легкими. І при всіх цих перевагах плазмові монітори дозволяють зберегти якість зображення на дуже високому рівні.

Вони здатні забезпечити, у силу особливостей плазмового ефекту, підвищену чіткість зображення, яскравість (до 500 Кд/м2), контрастність (до 400:1) і дуже високу соковитість кольорів. Кут видимості зображення близько 160 градусів. Плазмові монітори зовсім не створюють шкідливих електромагнітних полів. Ці монітори не страждають від вібрації. Необхідно також відзначити й стійкість плазмових моніторів до електромагнітних полів, що дозволяє використовувати їх у промислових умовах. До позитивних якостей плазмових моніторів також можна додати невеликий час їх регенерації (час між посиланням сигналу на зміну яскравості пікселя та фактичною її зміною), відсутність перекручувань зображення й проблем видимості електронних променів та їхнього фокусування. Це дозволяє використовувати такі монітори для перегляду відео, що у свою чергу робить такі монітори просто незамінними помічниками на різних відеоконференціях і презентаціях.

Основним недоліком є їх висока ціна. Також дуже істотним недоліком плазмового монітора є досить висока потужність споживання, яка зростає зі збільшенням діагоналі монітора. Цей недолік повязаний вже безпосередньо із самою технологією одержання зображення з використанням плазмового ефекту. Цей факт призводить до збільшення експлуатаційних витрат на даний монітор.Ще одним недоліком плазмових моніторів є досить низька роздільна здатність, обумовлена більшим розміром елемента зображення. Але, з огляду на той факт, що ці монітори переважно використовуються на презентаціях, конференціях, а також як різні інформаційні і рекламні табло, то зрозуміло, що основна маса глядачів перебуває на значній відстані від екранів цих моніторів. А це сприяє тому, що видима на маленькій відстані зернистість просто зникає на великій відстані.

Ще одним досить значущим недоліком плазмових моніторів є порівняно невеликий термін служби. Це повязане з досить швидким вигорянням люмінофорних елементів, властивості яких швидко погіршуються, і екран стає менш яскравим. Для приклада, уже через кілька років інтенсивної експлуатації яскравість світіння екрана може знизитися вдвічі. Тому термін служби плазмових моніторів обмежений і становить 5-10 років при досить інтенсивній експлуатації або близько 10000 годин. Ще один, напевно, останній неприємний ефект, можливий у плазмових моніторів це інтерференція. По суті, інтерференція це взаємодія світла з різними довжинами хвиль, випроміню-ваного із сусідніх елементів екрана. Внаслідок цього явища певною мірою погіршується якість зображення.

Плазмовий ефект відомий науці досить давно: він був відкритий ще в 1966 р. Неонові вивіски й лампи денного світла лише деякі види застосування цього явища світіння газів під впливом електричного струму. А от виробництво плазмових екранів для моніторів почалося тільки зараз. Лицьова панель такого екрана складається із двох пласких скляних пластин, розташованих на відстані близько 100 мікрометрів одна від одної.

Між цими пластинами знаходиться шар інертного газу (як правило, суміш ксенону й неону), на який впливає сильне електричне поле. Робочим елементом (пікселем), що формує окрему точку зображення, є група з трьох субпікселів, відповідальних за три основних кольори відповідно. Кожен субпіксель являє собою окрему мікрокамеру, на стінках якої перебуває флюоресціруюча речовина одного з основних кольорів. Пікселі знаходяться у точках перетинання прозорих керуючих хром-мідь-хромових електродів, що утворюють прямокутну сітку. Для того щоб запалити піксель, відбувається приблизно таке. На два ортогональних один одному живильний і управляючий електроди, у точці перетину яких перебуває потрібний піксель, подається висока управляюча змінна напруга прямокутної форми. Газ в осередку віддає більшу частину своїх валентних електронів і переходить у стан плазми. Іони й електрони поперемінно збираються біля електродів по різні боки камери, залежно від фази управляючої напруги. Для підпалу на скануючий електрод подається імпульс, однойменні потенціали складаються, вектор електростатичного поля подвоює свою величину. Відбувається розряд частина заряджених іонів віддає енергію у вигляді випромінювання квантів світла в ультрафіолетовому діапазоні (залежно від газу). У свою чергу, флюоресцуюче покриття, перебуваючи в зоні розряду, починає випромінювати світло у видимому діапазоні, що й сприймає спостерігач. 97% ультрафіолетової складової випромінювання, шкідливого для очей, поглинається зовнішнім склом. Яскравість світіння люмінофора визначається величиною управляючої напруги.

Визнаним лідером плазмової технології є компанія Fujitsu, що накопичила найбільший досвід у цій області. У 1995 р. Fujitsu вийшла на ринок з новою комерційною серією плазмових дисплеїв Plasmavision, що вдосконалюється й досі. Практично кожен виробник плазмових панелей додає до класичної технології деякі власні ноу-хау, що поліпшують передачу кольору і контр