Плоскі діелектричні хвилеводи для ТІ поляризації
Курсовой проект - Физика
Другие курсовые по предмету Физика
?ії в первинній хвилі, що падає на поверхню роздягнула за одну секунду дорівнює:
Відповідно для відбитої й переломленої хвиль:
Якщо й розділити на вийдуть відбивна й пропускна здатності відповідно.
Якщо ж вектор E утворить із площиною падіння кут , то
Тоді
Зауважуємо, що у випадку
.
Кут у цьому випадку називається кутом Брюстера. І якщо світло падає під кутом Брюстера, те електричний вектор відбитої хвилі не має крапки в площині падіння.
6. Повне внутрішні відбиття
При поширенні світла з більше щільного оптичного середовища в менш. Т.е. коли
За умови, що кут падіння перевершує критичне значення
Представлене вираженням .
Якщо , те, так що напрямок поширення світла відносно до поверхні першого розділу. Якщо перевищує 90, світло не входить у друге середовище. Все світло відбивається назад у перше середовище, і ми говоримо про повне внутрішнє відбиття.
Але електромагнітне поле не дорівнює нулю в другому середовищі, відсутній лише потік енергії через границю. Якщо у фазовому множнику минулої хвилі покладемо:
і
те одержимо
Це вираження описує неоднорідну хвилю, що поширюється уздовж поверхні роздягнула в площині падіння й міняється експоненціальне зі зміною відстані від цієї поверхні.
Залежність амплітуди електричного вектора від кута падіння, для двох випадків. Перший випадок: падіння з більше щільного середовища в менш щільну; другий випадок: падіння з менш щільного середовища в більше щільну.
Для випадку n=1,6
Видно, що при 38 градусах (критичний кут) енергія не проходить у друге середовище.
Для випадку n=0.625
Чітко видний кут Брюстера (62 градуса). Із графіка видно, що відсутній R пара. Електричний вектор відбитої хвилі не має тридцятилітньому в площині падіння.
7. Рівняння, що описують поширення електромагнітних хвиль у плоскому оптичному хвилеводі
У даній роботі розглядається ТІ поляризацію. Її відмінність від ТМ полягає в тім, що в ТІ хвилях електричний вектор лежить у площині падіння.
У пасивних оптичних хвилеводах відсутні сторонні струми й заряди, і рівняння Максвелла, як говорилося на початку, мають нульову праву частину. Уважаючи, що електромагнітне поле змінюється в часі за гармонійним законом, тобто
, .
Рівняння Максвелла для комплексних амплітуд можна записати так:
(31)
(32)
і абсолютної діелектричні й магнітні проникності середовища.
Розглянемо плоский хвилевід.
Цей хвилевід утворений плоскою діелектричною плівкою, вона однорідна в напрямках X і Y. У напрямку Z хвилевід неоднорідний. Якщо розглядати ТІ хвилі, то
.
Покладемо для визначеності, що хвиля поширюється уздовж осі Y.
Одержали співвідношення, що виражають звязок між E і H компонент:
У результаті підстановки цих рівнянь в
можна одержати хвильове рівняння для електричного компонента поля:
(33).
Одержали рівняння поширення, що описує, хвилі в оптичному хвилеводі. Це рівняння з змінними і його рішення варто шукати у вигляді добутку двох функцій, одна й з яких залежить тільки від y, а друга тільки від z. Розподіл амплітуди поля по координаті x передбачається рівномірним.
Т.е. можна записати:
, де , а
Оскільки ліва й права частини вираження залежать від різних змінних, то рівність може дотримуватися тільки в тому випадку, коли кожна із частин рівності є константою. Нехай ця константа позначена , одержимо:
,
для i-ой середовища (усього 3 середовища)
Конкретний вид функції Y(y) визначається із цього рівняння з урахуванням граничних умов і описує розподіл амплітуд фаз у поперечному перерізі шару й прилягаючих середовищ. Повний же вид рішення визначається як добуток Y(y)Z(z) і з урахуванням тимчасової залежності має вигляд
.
Таким чином, рішення має вигляд гармонійної хвилі, що поширюється уздовж осі Y і має амплітудний розподіл Y(y) у напрямку, поперечному стосовно напрямку поширення.
Отже, потрібно знайти граничні умови, що задовольняють рівнянням безперервності дотичних E і H тридцятимільйонний компонент електромагнітного поля для ТІ хвиль мають вигляд:
при y=0
при y=-h.
Помітимо, що умови безперервності H- на границях еквівалентна умовам безперервності похідних від розподілу E- поля на границях шарів 1 і 2, 2 і 3. Нехай у розглянутій системі із трьох шарів виконується необхідна умова існування режиму, тобто . Фізично це означає, що хвилі, що біжать у шарі 2 можуть випробовувати повне внутрішнє відбиття від границь із шарами 1 і 3. Для рішення рівнянь розглянемо величину . Якщо величина виявиться негативної, то рішення являє собою експоненту з дійсним показником. Якщо ж ця величина - позитивна, то рішення являє собою гармонійну функцію або експоненту із мнимим показником. Розглянемо властивості рішень:
Умова А. .
При цьому свідомо виконуються умови й , і з рівнянь (15-17) треба, що у всіх трьох областях. Очевидно, що є експонентною функцією у всіх трьох областях. З огляду на необхідність безперервності похідній розподілу поля на границях роздягнула між шарами, одержим