Пленкообразователи на основе олигодиенов

Информация - Химия

Другие материалы по предмету Химия

µдинений

 

Среди современных пленкообразователей в отечественной и зарубежной лакокрасочной промышленности лидирующее положение занимают непредельные соединения.

Известно, что химическую основу пленкообразования непредельных соединений составляют процессы окисления и окислительной полимеризации. Они играют решающую роль в реализации потенциальной способности таких соединений к пленкообразованию и в формировании свойств образующихся покрытий [1].

С позиции механизма окисления все олефины подразделяют на две большие группы: винильные и аллильные соединения. К первой группе относят молекулы, содержащие в ?-положении к двойной связи электронодонорные или электроноакцепторные заместители (-С6Н5, -НС=СН-, -СN, СООR, -СОNН2, -ОСОR и т.п.), ко второй - соединения, содержащие в ?-положении к кратной связи только группы -С-Н, т.е. структурные единицы типа СН3-СН=СН-, -СН2-СН=СН-, СН-СН=СН-.

При окислении винильных соединений доминирующими являются реакции присоединения пероксидрадикалов к двойной связи.

При окислении соединений аллильного типа в отличие от винильных соединений продолжение цепей происходит путем отрыва атома водорода.

Олигобутадиены, отличающиеся содержанием в полимерной цепи звеньев различной микроструктуры и звеньев с сопряженными двойными связями, окисляются по механизму, описываемому следующей схемой[2]:

 

I > М? (МО2?)

М? + О2 > МО2?

МО2? + МН > МООН + М?

2 МО2? > продукты

 

Систематическое изучение окисления при пленкообразовании выполнено к настоящему времени для олигомеров трех классов: олигоэфиракрилатов, олигомерных аллиловых эфиров и (со)олигодиенов.

 

1.2 Жидкие каучуки как пленкообразователи для водоразбовляемых материалов

 

Большой интерес к жидким каучукам как пленкообразователям обусловлен тем, что олигодиены являются новым источником синтетических непредельных пленкообразующих веществ, которые подобно растительным маслам и смешанным эфирам непредельных высших жирных кислот (алкидам) обладают способностью образовывать при комнатной температуре полимерные пленки сетчатого строения после нанесения тонким слоем на подложку в результате взаимодействия с кислородом воздуха. Кроме того, жидкие каучуки хорошо совмещаются со всеми маслами (за исключением касторового), алкидами, некоторыми карбамидными и фенольными смолами и другими распространенными пленкообразующими веществами.

В лакокрасочной промышленности применяют жидкие диеновые каучуки с молекулярной массой (Мм) 1000-5000 и йодным числом около 300-400 г I/100 г. Меньшая Мм приводит к увеличению времени отверждения и ухудшению физико-механических свойств покрытий. С ростом Мм жидких каучуков улучшаются пленкообразующие свойства, но в значительной степени возрастает вязкость, в результате чего падает сухой остаток композиций. Наибольшее распространение как пленкообразователи получили жидкие каучуки на основе диеновых углеводородов - бутадиена, сополимеров бутадиена со стиролом, пипериленом [3].

Промышленные марки жидких каучуков (ЖК) получают по механизму свободнорадикальной, катионной, стереоспецифической и анионной полимеризации. От метода получения продуктов полимеризации зависит их молекулярное строение. Системы со свободнорадикальными инициаторами дают разветвленные полимеры, характеризующиеся широким молекулярно-массовым распределением (ММР), в то время как при анионной полимеризации получают преимущественно линейные полимеры с узким ММР [4].

На основании имеющихся в литературе данных [1-3,11-13] можно заключить, что пленкообразование жидких углеводородных каучуков, также как и других непредельных соединений - растительных масел, смешанных эфиров непредельных высших жирных кислот (алкидов), эфиров аллилового спирта - протекает при участии кислорода воздуха. Систематическое исследование окислительных и полимеризационных процессов при пленкообразовании 1,4-цис-олигобутадиена, олигобутадиенов смешанной микроструктуры, низкомолекулярных сополимеров бутадиена с пипериленом, пропиленом и некоторыми другими диенами позволило выявить закономерности и особенности окислительной полимеризации олигодиенов.

Окисление сопровождается процессом деструкции и сшивания макромолекул в полимер трехмерного строения. При изучении окислительных и полимеризационных превращений в жидких цис-бутадиеновых каучуках в тонких пленках на воздухе установлено, что пространственно-сетчатые полимеры в пленке формируются через стадию образования растворимых полимеров, представляющих собой окисленные разветвленные продукты [5,6]. На этой стадии в полимеризационных процессах преобладает реакция сополимеризации цис-бутадиенового каучука с кислородом, а гомополимеризация играет второстепенную роль.

 

1.3 Пленкообразующая способность (со)олигодиенов

 

Пленкообразующая способность (со)олигодиенов коррелирует, прежде всего с такими параметрами, как состав и микроструктура полимерной цепи, а также с содержанием сопряженных двойных связей.

В случае олигобутадиенов микроструктура полимерной цепи оказывает решающее влияние на их пленкообразующую способность. В полимеризации каучука СКДН-Н при 20С в пленках участвуют двойные связи лишь в цис-звеньях, а транс-звенья остаются практически не затронутыми [4]. Реакционную способность двойных связей в бутадиеновых звеньях различной микроструктуры можно расположить следующим образом: 1,4-цис->1,4-транс-?1,2-.

Пленкообра