Плазменное поверхностное упрочнение металлов

Реферат - Разное

Другие рефераты по предмету Разное

еремещению. С целью упрощения модель для приближенной оценки парамет-ров сканирования можно представить в виде плоской задачи.

Известно, что в случае использования модели одновременного нагрева полу бесконечного тела поверхностным тепловым источником с постоянной во времени интенсивностью, можно получить соотношении плотности мощностиgm , требуемой для достижения на поверхности максимальной температурыТтах

(2.19)

gттахасрv ? /4 at

 

где ? -температуропроводность;

ср - объемная теплоемкость;

t - времся нагрева.

Для нагрева плазменной струей (дугой)

(2.20)

t = d / ?,g = gn / S

 

где d - диаметр пятна нагрева в направлении движения;

? - скорость перемещения пятна, относительно детали;

gn - полная мощность, подводимая к плазмотрону;

S - площадь, обрабатываемая плазменной струей.

В случае упрочнения без оплавления поверхности, необходимо, чтобы Ттах а поверхности! материала не превышала температуру плавления

(2.21)

Ттах?Тпл

 

Тогда, согласно (2.19) и (2.21), должно выполняться условие

(2.22)

gтvt ? Тпл асрv ? /4 a

 

где знак равенства соответствует максимальной глубине закалки, без оплавления поверхностности.

Рассмотрим пятно нагрева радиусом r, движущиеся по поверхности металла со скоростью ? и одновременно совершающее пилообразные колебания частотой f и амплитудой 2d перпендикулярно направлению ?, рис. 2.2.

 

 

 

Рис.2.2. Схемы линейного (а) и кругового (б) сканирования.

 

Сканирующая плазменная струя создает на обрабатываемой поверхности усредненный источник тепла, размерами 2r * 2 d , движущийся со скоростью?,

для которого время нагрева определяется соотношением:

t1=2r/? (2.23)

 

а плотность мощности: gт = gэф / 4rd

где gэф - эффективная тепловая мощность.

Из (2.22) следует, что для максимальной глубины закалки необходимо, чтобы выполнялось условие:

 

(2.24)

gтv t1 = Тпл асрv? / 4а

Кроме того, сканирующая плазменная струя создает концентрированный источник тепла диаметром 2r , скорость которого определяется из амплитуды и частоты колебаний, тогда время нагрева можно записать как:

(2.25)

t2 = 2( 2r / 4df ) = r/df

 

Множитель 2 означает, что в крайних точках пятно нагрева находится вдвое дольше, чем в промежуточных. Тогда плотность мощности соответственно равна:

( 2.26)

gт2 = gn / ?r2

С целью исключения оплавления поверхности в крайних точках необходимо выполнение условия:

(2.27)

g2 v ?2 ‹ g1 v?1 ? Тпл асрv? / 4а

 

Амплитуда и частота сканирования должны соответствовать выражениям

(2,28)

v d /f ‹ ?rv8?

или

 

Выражение (2.28) показывает, что частота сканирования должна увеличиваться с уменьшением пятна нагрева, с ростом скорости обработки и амплитуды сканирования. На тепловые процессы и размеры упрочненной зоны, помимо параметров режима работы плазмотрона (сила тока, расход газа и т.) оказывают влияние и параметры ведения технологического упрочнения, такие как скорость обработки, дистанция обработки, угол наклона плазменной струи (дуги) к обрабатываемому изделию и др.

При разработке технологических процессов на практике необходимо иметь простые 9 удобные аналитические выражения для расчета основных параметров упрочнения. В работах по плазменному упрочнению [10, 12 - 14] используются различные аналитические выражения. Так в работе [12] скорость нагрева локальной зоны определяется из выражения:

 

где gs - плотность мощности плазменной дуги;

?, ?- коэффициенты температуропроводности и теплопроводности;

? - время воздействия;

h- глубина упрочнения.

Значение плотности мощности плазменной дуги достаточной для фазовыхпревращений определяют:

 

где Тзак - температура закалки;

В - коэффициент аккумуляции теплоты.

Глубина закаленного слоя определяется из выражения:

 

где Р - мощность плазменной дуги;

? - скорость обработки;

d- диаметр пятна нагрева;

? - плотность материала;

Ст - удельная теплоемкость;

Q- теплота плавления;

Кв- коэффициент, учитывающий качество обрабатываемой поверхностности.

Скорость обработки определяется как:

 

 

В работе [13] используется зависимость глубины закалки от параметра

h = Р/ (dc ?)0,4

где Р - тепловая мощность источника нагрева;

d - диаметр сопла;

? - скорость обработки.

В работах Токмакова В.П., Гречневой М.В., Петухова А.В., Скрипкина А.А., Матханова В.Н. приводятся расчетные данные, позволяющие определить температуру нагрева и скорость охлаждения металла. Построены номограммы для выбора оптимальных режимов плазменного упрочнения. Эксперимента