Плазменное поверхностное упрочнение металлов
Реферат - Разное
Другие рефераты по предмету Разное
еремещению. С целью упрощения модель для приближенной оценки парамет-ров сканирования можно представить в виде плоской задачи.
Известно, что в случае использования модели одновременного нагрева полу бесконечного тела поверхностным тепловым источником с постоянной во времени интенсивностью, можно получить соотношении плотности мощностиgm , требуемой для достижения на поверхности максимальной температурыТтах
(2.19)
gт=Ттахасрv ? /4 at
где ? -температуропроводность;
ср - объемная теплоемкость;
t - времся нагрева.
Для нагрева плазменной струей (дугой)
(2.20)
t = d / ?,g = gn / S
где d - диаметр пятна нагрева в направлении движения;
? - скорость перемещения пятна, относительно детали;
gn - полная мощность, подводимая к плазмотрону;
S - площадь, обрабатываемая плазменной струей.
В случае упрочнения без оплавления поверхности, необходимо, чтобы Ттах а поверхности! материала не превышала температуру плавления
(2.21)
Ттах?Тпл
Тогда, согласно (2.19) и (2.21), должно выполняться условие
(2.22)
gтvt ? Тпл асрv ? /4 a
где знак равенства соответствует максимальной глубине закалки, без оплавления поверхностности.
Рассмотрим пятно нагрева радиусом r, движущиеся по поверхности металла со скоростью ? и одновременно совершающее пилообразные колебания частотой f и амплитудой 2d перпендикулярно направлению ?, рис. 2.2.
Рис.2.2. Схемы линейного (а) и кругового (б) сканирования.
Сканирующая плазменная струя создает на обрабатываемой поверхности усредненный источник тепла, размерами 2r * 2 d , движущийся со скоростью?,
для которого время нагрева определяется соотношением:
t1=2r/? (2.23)
а плотность мощности: gт = gэф / 4rd
где gэф - эффективная тепловая мощность.
Из (2.22) следует, что для максимальной глубины закалки необходимо, чтобы выполнялось условие:
(2.24)
gтv t1 = Тпл асрv? / 4а
Кроме того, сканирующая плазменная струя создает концентрированный источник тепла диаметром 2r , скорость которого определяется из амплитуды и частоты колебаний, тогда время нагрева можно записать как:
(2.25)
t2 = 2( 2r / 4df ) = r/df
Множитель 2 означает, что в крайних точках пятно нагрева находится вдвое дольше, чем в промежуточных. Тогда плотность мощности соответственно равна:
( 2.26)
gт2 = gn / ?r2
С целью исключения оплавления поверхности в крайних точках необходимо выполнение условия:
(2.27)
g2 v ?2 ‹ g1 v?1 ? Тпл асрv? / 4а
Амплитуда и частота сканирования должны соответствовать выражениям
(2,28)
v d /f ‹ ?rv8?
или
Выражение (2.28) показывает, что частота сканирования должна увеличиваться с уменьшением пятна нагрева, с ростом скорости обработки и амплитуды сканирования. На тепловые процессы и размеры упрочненной зоны, помимо параметров режима работы плазмотрона (сила тока, расход газа и т.) оказывают влияние и параметры ведения технологического упрочнения, такие как скорость обработки, дистанция обработки, угол наклона плазменной струи (дуги) к обрабатываемому изделию и др.
При разработке технологических процессов на практике необходимо иметь простые 9 удобные аналитические выражения для расчета основных параметров упрочнения. В работах по плазменному упрочнению [10, 12 - 14] используются различные аналитические выражения. Так в работе [12] скорость нагрева локальной зоны определяется из выражения:
где gs - плотность мощности плазменной дуги;
?, ?- коэффициенты температуропроводности и теплопроводности;
? - время воздействия;
h- глубина упрочнения.
Значение плотности мощности плазменной дуги достаточной для фазовыхпревращений определяют:
где Тзак - температура закалки;
В - коэффициент аккумуляции теплоты.
Глубина закаленного слоя определяется из выражения:
где Р - мощность плазменной дуги;
? - скорость обработки;
d- диаметр пятна нагрева;
? - плотность материала;
Ст - удельная теплоемкость;
Q- теплота плавления;
Кв- коэффициент, учитывающий качество обрабатываемой поверхностности.
Скорость обработки определяется как:
В работе [13] используется зависимость глубины закалки от параметра
h = Р/ (dc ?)0,4
где Р - тепловая мощность источника нагрева;
d - диаметр сопла;
? - скорость обработки.
В работах Токмакова В.П., Гречневой М.В., Петухова А.В., Скрипкина А.А., Матханова В.Н. приводятся расчетные данные, позволяющие определить температуру нагрева и скорость охлаждения металла. Построены номограммы для выбора оптимальных режимов плазменного упрочнения. Эксперимента