Плазменное поверхностное упрочнение металлов
Реферат - Разное
Другие рефераты по предмету Разное
µциальные карбиды, интерметаллические соединения.
Наличие легирующих элементов и образование ими соединений с углеродом оказывает существенное влияние на высокотемпературные процессы на диаграмме Fе-Fе3С по сравнению с углеродистыми сталями. Одни элементы (никель, марганец, медь) понижают критическую точку Асз и расширяют область ?- фазы. Другие (хром, вольфрам, молибден, кремний, алюминий, ванадий, бор и др.) при определенной концентрации повышают критическую точку Ас3. Наиболее резко превращения замедляются при легировании сталей (V,W,Мо) образующие устойчивые карбиды, а также при повышенном содержании хрома (более 2 %).
Легированные конструкционные стали обладают меньшей критической скоростью охлаждения* и как следствие этого лучше прокаливаются. Известно, что чем выше в стали легирующих элементов, тем выше ее прокаливаемость. На сталях, имеющих в своем составе марганец , хром, бор, никель, молибден после плазменного упрочнения глубина упрочненного слоя больше, по сравнению с углеродистыми сталями при одинаковых режимах упрочнения.
При сравнении степени упрочнения легированных и углеродистых конструкционных сталей, т.к. ЗОХ, 40Х, 5ОХ и стали 30, 45, 50 показывает, что даже при небольшом легировании хромом (0,8-1,1 %) происходит заметное увеличение микротвердости. Аналогичная картина и для сталей, легированных марганцем, табл. 2.10.
Микротвердость, НПОЛегированнаяКонструкционная ЗОХ 8800-9000
40Х 9500-10500
50Х11000-12000
45Г 9500-10500
50Г 11200-12500
- 7900-7400
508200-9500
В высокоуглеродистых сталях добавки легирующих элементов (0,5-1,5 %) приводят к усилению неоднородности структуры упрочненного слоя вследствие уменьшения коэффициента диффузии углерода и увеличения стойкости карбидов. Благодаря высокой легированности мартенсита микротвердость упрочненного слоя достигает больших значений. Основные структуры, образующиеся в упрочненном слое легированных сталей мартенсит + карбиды + остаточный аустенит. Анализ легированных сталей затрудняется многообразием влияния легирующих элементов на фазовые структурные превращения при плазменном упрочнении и ограничивается только экспериментальными данными по микротвердости упрочненного слоя, табл. 2.11.
При использовании плазменного упрочнения для повышения твердости деталей изготовленных из этих сталей рекомендуется использовать режимы упрочнения, позволяющие добиться неполного растворения карбидов (достаточного для насыщения мартенсита) и меньшего содержания остаточного аустенита. Это достигается при максимальных скоростях обработки.
Плазменному поверхностному упрочнению подвергались стали коррозионностойкие типа 20X13, 30X13, 40X13, 95X18, 25Х13Н2, рессорно-пружинные стали типа 65Г, 60С2, 50ХФА, а также стали для отливок типа 35Л, 45Л, 20ФЛ.
Табл. 2.11
Микротвердость легированных сталей после плазменного упрочнения
Сталь
Микротвердость Н, МпаГлубина упрочненного слоя, ммИсходной структурыВ закаленной зоне30Х
40Х
50Х
40ХН
50ХН
30Г
45Г
50Г
20ХГР
30ХГТ
15ХФ
40ХФА
40ХС
30ХГСА
35ХМ
20ХН3А
38ХГН
45ХН2МФА
38Х2МЮА
38ХН1М
18Х2Н4МА1800-2000
1900-2300
2000-2100
2200-2250
2300-2400
2100-2200
2100-2200
2200-2300
1800-1900
1800-2000
1750-1900
2000-2100
1900-2000
1800-1950
1900-2100
1800-2100
2000-2100
2100-2200
2200-2300
2200-2300
2200-2100
8800-9000
9500-10500
11000-12000*
9200-10500
10700-11500
7900-8200
9500-10500
11200-12500*
7200-8600
8100-9500
7900-8500*
10500-11200
9800-11000
7500-7900
8300-9800
9000-10000*
10500-11000*
12200-13000
12100-13000
10000-11500*
13000-13800
0,1-3
0,1-3
0,1-3
0,1-4
0,1-4
0,1-2,5
0,1-4
0,1-5
0,1-2
0,1-3
0,1-3,5
0,1-3
0,1-3,5
0,1-4
0,1-3,5
0,1-3,5
0,1-4
0,1-4
0,1-4
0,1-4,5
0,1-4,5
* - Режим обработки с оплавлением поверхности
Плазменное упрочнение коррозийных сталей проводилось без оплавления и с оплавлением поверхностности. Микротвердость упрочненного слоя на этих сталях очень высокая, по сравнению с печной термообработкой, табл. 2.12.
Структура упрочненного слоя при оплавлении поверхности состоит из мартенсита, остаточного аустенита и карбидов. Количество остаточного аустенита достигает у поверхности 35-45 %.
Максимальная микротвердость приходится на слой закалки из твердой фазы, где частично сохраняются нерастворившиеся карбиды и небольшое содержание остаточного аустенита (по сравнению с оплавленной зоной).
Табл.2.12.
Микротвердость коррозионностойких сталей после
плазменного упрочнения
СтальМикротвердость упрочненного слоя Н, Мпа
Печная закалка
Плазменная закалкабез оплавленияс оплавлением20Х13
30Х13
40Х13
95Х18
25Х13Н24800-5600
5000-5800
6000-6800
7800-8900
6900-74005500-6000
6200-7500
8800-9400
9000-10500
9500-110008900-9500
9000-10500
9500-11000
10000-11500
11200-12500
При плазменном упрочнении без оплавления максимальная твердость по глубине также находится на некотором расстоянии от поверхностности. В поверхностном слое фиксируется небольшое количество (5-10 %) остаточного аустенита.
Обработка рессорно-пружинных сталей 65Г,80С2, 50ХФА с оплавлением и без оплавления поверхности не отличается от обработки углеродистых и легированных сталей, рис. 2.25.
Структура упрочненной зоны представляет собой высоко - дисперсный мартенсит + остат