Передача даних, сигналів звукового мовлення, частотних груп і телевізійних сигналів по цифрових каналах

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

Fд=16кГц). Для організації каналу 3В-1-го класу в ЦСП ІКМ-30 частота дискретизації вибирається рівною 32кГц, тобто використовуються чотири канали (канальні інтервали КІ 1, КІ 9, КІ 17 і КІ 25). Тому швидкість передачі сигналу 3В складає .

Структурна схема приймача-передавача сигналів ЗМ 1-го класу наведена на рис.

 

Рисунок 3

 

Аналоговий сигнал ЗМ проходить через попередньо перекручуючий контур (ПрК), що послаблює низькочастотні складові сигналу ЗМ. Фільтр НЧ обмежує спектр сигналу частотою 10 кГц. Далі модулятор (М) дискретизує сигнал ЗМ, після чого АIM-сигнал ЗМ надходить у груповий тракт АIM сигналів, кодується і після перетворювання в лінійний код груповий ІКМ-сигнал передається в цифровий лінійний тракт (ЦЛТ).

На приймальній стороні після декодування з групового АIM-сигналу за допомогою часового селектора (ЧС) виділяються відліки ЗМ-сигналу, що виникають з частотою F=4*8=32кГц. Фільтр НЧ перетворює АIM-сигнал ЗМ в АМ-сигнал. Відновлюючий контур (ВК) компенсує попередні перекручування, що були внесені на передавальній стороні попередньо перекручуючим контуром. Для компенсації цих попередніх перекручувань необхідно, щоб залежності загасання від частоти попередньо перекручувального ( ) контуру і контуру, який вiдновлює (), були взаємно-зворотні, тобто . Для цього необхідно, щоб виконувалася умова (у дБ) Загальний характер частотних залежностей загасання контурів ПК і ВК наведено на рис.4.

 

Рисунок 4

 

Доцільність попередніх перекручувань можна пояснити таким чином.

Частотний спектр сигналу ЗМ нерівномірний. Його основна частина зосереджена в області 0,5...2 кГц. Зі збільшенням частоти спектральна щільність сигналу ЗМ різко зменшується. На противагу цьому спектр шумів квантування рівномірний у всій смузі частот сигналів ЗМ. У результаті цього на верхніх частотах потужність шумів квантування стає порівняною з потужністю сигналу. Внаслідок цього вплив шумів квантування стає помітним на слух. На рис. 5 наведено залежності спектральної щільності потужності сигналу і спектральної щільності потужності шумів квантування від частоти.

 

Рисунок 5

 

За рахунок того, що загасання ВК зростає зі збільшенням частоти, спектральна щільність потужності шумів квантування зменшується, що робить шуми квантування в області цих частот менш помітними.

Для якісної передачі сигналу ЗМ використовується апаратура АЦМ-480, що забезпечує дискретизацію сигналу ЗМ із частотою 40 кГц, нелінійне квантування і 12-розрядне кодування. Збільшення розрядності з 8-ми до 12-ти призводить до збільшення в 16 разів точності відліку кожної дискрети, що у свою чергу забезпечує підвищення захищеності сигналу від шумів квантування на 24 дБ. Апаратура АЦМ-480 поєднується з первинним цифровим трактом апаратури ІКМ-30 і дозволяє організувати у ньому 4 моно, або 2 стерео каналів ЗМ, або 8 каналів ЗМ 2-го класу.

Для підвищення завадостійкості сигналу від перешкод у цифровому тракті в кожну кодову групу вводиться додатковий біт перевірки на парність 6-ти старших розрядів, використовується перестановка розрядів, що підвищує захищеність сигналу від зосереджених перешкод (групові помилки перетворюються в одиночні, які виявляються). З урахуванням надлишковості швидкість передачі по кожному з 4-х каналів ЗМ становить 512 кбіт/с.

Структурна схема апаратури АЦМ-480 наведена на рис. 6.

Рисунок 6

 

На передавальній стороні в апаратурі ККВ (комплект кодування) сигнал ЗМ перетворюється в цифровий. Сформовані цифрові сигнали 4-х каналів ЗМ надходять зі швидкістю 512 кбіт/c на комплект апаратури первинного часового групоутворення (КПЧГ), де здійснюється синхронне обєднання у цифровий потік зі швидкістю 2048 кбіт/с, а на приймальній стороні виконується поділ загального потоку на 4 потоки зі швидкістю 512 кбіт/c кожний. Після декодування в апаратурі комплекту декодування (КДВ) сигнали ЗМ надходять на термінали.

В апаратурі цифрової передачі сигналу ЗМ ІКМ-В 6/12 за рахунок удос-коналення методу аналого-цифрового перетворення необхідна швидкість передачі зменшена до 316 кбіт/с. У свою чергу це забезпечило можливість передавати сигнали 6-ти моно, або 3-х стереоканалів вищого класу, або 12 каналів 2-го класу (зі смугою частот до 7 кГц).

 

3. Передача сигналів частотних груп

 

На практиці в процесі впровадження ЦСП виникає необхідність стикування широкосмугових аналогових трактів з цифровими. Зокрема, така необхідність виникає під час заміни апаратури АСП на апаратуру ЦСП. Тому використовується спеціальне аналого-цифрове обладнання (АЦО), що забезпечує перетворення сигналу АСП (в основному сигналів вторинної і третинної груп) у цифровий і навпаки. У процесі перетворення груповий сигнал АСП дискретизуєтся і кодується. Вихідний цифровий сигнал розділяється на декілька потоків того чи іншого ступеня ієрархії ЦСП, після чого ці потоки надходять на вхід апаратури більш високого ступеня ієрархії ЦСП. Швидкість вихідного потоку (В) визначається частотою дискретизації Fд і розрядністю кодових груп цифрового сигналу m. Спiввiдношення для розрахунку швидкостi передачi має вигляд В=mFд.

Значення частоти дискретизації залежить від варiанта аналого-цифрового перетворення сигналу, який використовується:

  1. з перетворенням частоти для зниження верхньої межі спектра сигналу;
  2. без перетворення частоти.

Розглянемо перший варіант на прикладі перетворення сигналу вторинної групи (ВГ) АСП. Структурнi схеми передавально