Оценка значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента
Контрольная работа - Экономика
Другие контрольные работы по предмету Экономика
? на 1% и при отвлечении от сопутствующего отклонения других факторов, входящих в уравнение, результативный признак отклонится от своего среднего значения на ej процентов от у. Чаще интерпретируют и применяют коэффициенты эластичности в терминах динамики: при увеличении фактора х.на 1% его средней величины результативный признак увеличится на е. процентов его средней величины.
Рассмотрим расчет и интерпретацию уравнения многофакторной регрессии на примере тех же 16 хозяйств (табл. 8.1). Результативный признак - уровень валового дохода и три фактора, влияющих на него, представлены в табл. 8.7.
Напомним еще раз, что для получения надежных и достаточно точных показателей корреляционной связи необходима более многочисленная совокупность.
Таблица 8.7
Уровень валового дохода и его факторы
Номера хозяйствВаловой доход, руб./ra уЗатраты труда, чел.-дни/га х1Доля пашни,
% x2Надой молока на 1 корову,
кг, x3170426545,1. 3422229319335,11956334622969,42733442019360,23254569122559,03323667925563,43179745720158,13073850320851,83257931417073,226691080327659,042351169118842,537901277523250,536581358417348,638011450418351,932661577723658,9517316113826538,85526Сумма96793492865,556315Средняя604,9218,254,13520s221,934,610,6887v,,715,919,625,2
Таблица 8.8 Показатели уравнения регрессии
Dependent variable: уVar.Regression coefficientStd. errorT(DF=12)Prob.Partial г2Х12,260978,6800303,325,00606,4795х2-4,3073031,982283-2,173,05053,2824хЗ,166091,0270506,140,00005,7586Constant-240,112905Std. error оf est. = 79,243276
Решение проведено по программе Microstat для ПЭВМ. Приведем таблицы из распечатки: табл. 8.7 дает средние величины и средние квадратические отклонения всех признаков. Табл. 8.8 содержит коэффициенты регрессии и их вероятностную оценку:
первая графа var - переменные, т. е. факторы; вторая графа regression coefficient - коэффициенты условно-чистой регрессии bj; третья графа std. errror - средние ошибки оценок коэффициентов регрессии; четвертая графа - значения t-критерия Стьюдента при 12 степенях свободы вариации; пятая графа prob - вероятности нулевой гипотезы относительно коэффициентов регрессии;
шестая графа partial r2 частные коэффициенты детерминации. Содержание и методика расчета показателей в графах 3-6 рассматриваются далее в главе 8. Constant - свободный член уравнения регрессии a; Std. error of est. - средняя квадратическая ошибка оценки результативного признака по уравнению регрессии. Было получено уравнение множественной регрессии:
у= 2,26x1 - 4,31х2 + 0,166х3 - 240.
Это означает, что величина валового дохода на 1 га сельхозугодий в среднем по совокупности возрастала на 2,26 руб. при увеличении затрат труда на 1 ч/га; уменьшалась в среднем на 4,31 руб. при возрастании доли пашни в сельхозугодиях на 1% и увеличивалась на 0,166 руб. при росте надоя молока на корову на 1 кг. Отрицательная величина свободного члена вполне закономерна, и, как уже отмечено в п. 8.2, результативный признак - валовой доход становится нулевым задолго до достижения нулевых значений факторов, которое в производстве невозможно.
Отрицательное значение коэффициента при х^ - сигнал о существенном неблагополучии в экономике изучаемых хозяйств, где растениеводство убыточно, а прибыльно только животноводство. При рациональных методах ведения сельского хозяйства и нормальных ценах (равновесных или близких к ним) на продукцию всех отраслей, доход должен не уменьшаться, а возрастать с увеличением наиболее плодородной доли в сельхозугодиях - пашни.
На основе данных предпоследних двух строк табл. 8.7 и табл. 8.8 рассчитаем р-коэффициенты и коэффициенты эластичности согласно формулам (8.34) и (8.35).
Как на вариацию уровня дохода, так и на его возможное изменение в динамике самое сильное влияние оказывает фактор х3 - продуктивность коров, а самое слабое - х2 - доля пашни. Значения Р2/ будут использоваться в дальнейшем (табл. 8.9);
Таблица 8.9 Сравнительное влияние факторов на уровень дохода
Факторы хjj.ej2jx10,3520,8160,138x2-0,206-0,3850,042x30,6640,9660,441
Итак, мы получили, что ?-коэффициент фактора хj относится к коэффициенту эластичности этого фактора, как коэффициент вариации фактора к коэффициенту вариации результативного признака. Поскольку, как видно по последней строке табл. 8.7, коэффициенты вариации всех факторов меньше коэффициента вариации результативного признака; все ?-коэффициенты меньше коэффициентов эластичности.
Рассмотрим соотношение между парным и условно-чистым коэффициентом регрессии на примере фактора -с,. Парное линейное уравнение связи у с х, имеет вид:
y = 3,886x1 243,2
Условно-чистый коэффициент регрессии при x1, составляет только 58% парного. Остальные 42% связаны с тем, что вариации x1 сопутствует вариация факторов x2 x3, которая, в свою очередь, влияет на результативный признака. Связи всех признаков и их коэффициенты парных регрессий представлены на графе связей (рис. 8.2).
Если сложить оценки прямого и опосредованного влияния вариации х1 на у, т. е. произведения коэффициентов парных регрессий по всем путям (рис. 8.2), получим: 2,26 + 12,550,166 + (-0,00128)(-4,31) + (-0,00128)17,000,166 = 4,344.
Эта величина даже больше парного коэффициента связи x1 с у. Следовательно, косвенное влияние вариации x1 через не входящие в уравнение признаки-факторы - обратное, дающее в сумме:
3,886 - 4,344 = - 0,458.
Заключение
Итак, мы рассмотрели оценку значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента и вывели расчет значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента в работе также указана актуальность данных вычеслений.
В работе рассматриваются только самые общие воп