Осушка газа методом абсорбции

Дипломная работа - Химия

Другие дипломы по предмету Химия



? и методы борьбы с ними

В связи с развитием добычи и транспорта природного газа перед работниками газовой промышленности остро встала проблема борьбы с гидратами углеводородных газов. Кристаллические соединения, схожие со снегом или льдом, образуемые ассоциированными молекулами углеводородов и воды, называются кристаллогидратами (или просто гидратами). Гидраты индивидуальных газообразных углеводородов или их смесей состоят из нестехиометрических соединений включения клеточного типа - клатратов.

Рис. 1.2. Кристаллическая решетка газового гидрата структуры I (a) и структуры II (б).

Советскими и зарубежными исследователями были изучены условия образования гидратов, их структура и разработаны меры борьбы с ними. Рентгенографическое исследование природы гидратов показало, что они образуют две основные структурные формы (рис. 1.2). Газовые гидраты имеют кристаллическую решетку, образуемую молекулами воды. Полости решетки заполнены поглощенными углеводородами.

Ячейки гидрата структуры I (см. рис. 1.2, а) включает 46 молекул воды и содержит 6 больших и 2 малых полости, доступных молекулам газа. Малые полости в обеих структурах гидратов имеют средний диаметр 0,52 нм, большие полости - диаметр 0,59 нм. Вещества, размер молекул которых более 0,69 нм, не образуют гидратов. Когда размер молекулы гидратообразователя менее 0>52 нм, образуется гидрат структуры I. Если размер молекулы гидратообразователя находится в автотранспорте, так как влага может вызывать замерзание редукторов и перебои в подаче газа.

При осушке сероводородсодержаших газов сероводород растворяется в гликолях, вызывая интенсивную коррозию оборудования и загрязняя окружающую среду. Наличие данных по растворимости сероводорода в гликолях позволяет разрабатывать меры его утилизации и создавать безотходную технологию.

По экспериментальным данным, гидраты образуются с момента появления центров кристаллизации, которые обычно формируются на поверхностях раздела:

при контакте вода - газ, вода - сжиженный газ, сжиженный газ - влажный газ;

при конденсации воды из объема газа и на пузырьках газа при его барботировании через воду;

при контакте вода - металл за iет сорбции газа, растворенного в воде.

Метан образует прямолинейные структуры кристалла гидрата, этан - извилистые и нитевидные, пропан - разветвленные и беспорядочные структуры. Природные газы, включающие различные углеводороды, образуют смешанные гидраты со сложной кристаллической разветвленной структурой.

Изучение кинетики образования гидратов представляет научный и практический интерес, поскольку знание скорости их образования позволит определить частоту подачи ингибитора в скважины или газопроводы. Однако в литературе имеется очень мало работ по кинетике образования гидратов в динамических условиях, характеризующих реальные условия выделения гидратов в трубопроводах и аппаратах.

Известно, что скорость образования гидратов при контакте природного газа с водой увеличивается с понижением температуры и повышением давления. Большое влияние на скорость гндратообразования оказывают и условие массопередачи. Если гидратообразователь не растворяется в воде, преобладающее влияние на скорость образования гидрата оказывает абсорбция гидратообразователя водой - массопередача. В тех случаях, когда гидратообразователь хорошо растворим в воде, преобладающим фактором является интенсивность отвода тепла - теплопередача.

Зависимость времени перехода природного газа в гидратную решетку от давления при разных температурах приведена на рис. 1.3. Анализ кривых показывает, что с увеличением давления и понижением температуры повышается скорость образования гидрата. Однако при низких температурах повышение давления мало влияет на процесс гидратообразоваиия. Повышение же температуры замедляет процесс образования гидратов.

Практический интерес представляют исследования, показавшие влияние незначительной добавки (0,5-2,0 % мол.) некоторых органических соединений, таких, как этиленгликоль, метанол, этанол и пропанол, на ускорение процесса образования гидратов. На рис. 1.4 показано, как с введением метанола изменяется количество пропана, связанного в гидрат, и время образования гидрата. Как видно, с увеличением содержания метанола в водно-метанольном растворе количество пропана в смеси проходит через максимум. Характерно, что с увеличением времени образования гидрата максимум возрастает.

Присутствие азота в природном газе понижает температуру образования гидратов, а наличие сероводорода и диоксида у углерода повышает температуру гидратообраэования природного газа.

При транспортировании газоконденсата, особенно нестабильного, по трубопроводам при наличии в нем пресной или низкоминерализованной воды и природного газа возможно образование гидратных пробок. В процессе образования гидратов легких углеводородов происходит механический захват жидкого конденсата. Капли конденсата как бы оказываются окруженными кристалликами гидрата. Объем конденсата, захваченного при образовании льда, примерно в 1,5-2,0 раза меньше, чем при образовании гидратов.

В толще земной коры при наличии благоприятных климатических условий из воды и природного газа образуются целые гидратные зоны, толщина которых может достигать 1,5 км на суше и 300-700 м в океанических отложениях. По предварительным данным, гидратные зоны в осадочных породах могут залегать на 25 % площади материков и до 90 % ?/p>