Особенности борьбы с гидратами природных газов при разработке месторождений

Дипломная работа - Геодезия и Геология

Другие дипломы по предмету Геодезия и Геология



тиленгликоля более эффективно: его водные растворы имеют более низкую температуру замерзания, меньшую вязкость (рисунок 4.11), а также малую растворимость в углеводородных газах, что значительно снижает его потери.

Гликоли с водой также смешиваются в любых соотношениях. Плотность водных растворов гликолей и температуру их замерзания можно определить по графикам (рисунок 4.12 и 4.13). Наиболее низкие температуры замерзания этих растворов находятся в пределах концентрации 60 - 70%, которые являются оптимальными при использовании гликолей в качестве ингибиторов гидратов. Так как упругость паров гликолей при температуре образования гидратов небольшая (рисунок 4.14), то они при вводе в трубопровод практически полностью остаются в жидкой фазе, что упрощает их улавливание для повторного использования.

Регенерация гликолей проводится до получения свежего раствора. Потери гликолей при использовании их в качестве ингибиторов гидратов складываются из потерь при регенерации (термическое разложение и унос), потерь в результате неполного отделения от газа в сепараторах, растворения гликолей в конденсате и газе, всевозможных утечек и др.

Наиболее радикальным способом предотвращения в системе газоснабжения гидратов и водяных пробок образования является осушка газа. Специальные установки по осушке газа размещаются обычно на УКПГ или на головных сооружениях магистральных газопроводов.

Существующие способы осушки при подготовке газа к дальнему транспортированию подразделяются на две основные группы:

). сорбционные - поглощение влаги жидкими (абсорбция) и твердыми (адсорбция) сорбентами;

). охлаждением газового потока с дополнительным компримированием и без него.

В результате осушки газа точка росы паров воды должна быть снижена ниже минимальной температуры при транспортировании газа.

Наиболее распространены два способа осушки газа: с использованием жидкого поглотителя - ДЭГ, ТЭГ и твердого поглотителя - силикагеля, активированной окиси алюминия (боксита) и цеолитов. Эти вещества гранулированы и имеют сильно развитую внутреннюю поверхность сообщающихся между собой пор, размер которых составляет единицы и десятки ангстрем. Удельная поверхность составляет сотни квадратных метров на 1 г поглотителя. "ага адсорбируется в порах при низкой температуре поглотителя и испаряется при подогреве.

Методы абсорбции ди - и триэтиленгликолями обеспечивают снижение точки росы на 24 - 40С.

Практика показала, что влагосодержание газа, транспортируемого по магистральным газопроводам, должно, составлять, не более 0,05 - 0,1 г/м3. Осушка газа предотвращает гидратообразование и снижает внутреннюю коррозию газопровода.

Жидкий сорбент, пригодный для осушки природных газов, должен удовлетворять требованиям: высокая взаимная растворимость с водой; низкая стоимость; антикоррозийность; стабильность по отношению к газовым компонентам; стабильность при регенерации; простота регенерации; малая вязкость; низкая упругость паров при температуре контакта, малое поглощение углеводородных компонентов газа; низкая способность к пенообразованию или образованию эмульсии.

В наибольшей степени этим требованиям отвечает диэтиленгликоль:

(СН2CH2OH) 2O, представляющий собой прозрачную глицериноподобную жидкость с температурой кипения 245С и температурой замерзания минус 9С. Плотность ДЭГ - 1,116 кг/м3.

Для осушки газа iелью снижения точки росы до минус 15 - минус 20С используется ДЭГ концентрации 99 - 99,5 %. Необходимое количество ДЭГ можно расiитать по формуле:

= (W1 - W2) c2/ (c1 - c2), (4.4)

где Q - расход ингибитора, кг/1000 м3 газа; W1 - влагосодержание газа до ввода в него ингибитора (берется по специальным графикам для пластовых условий), кг/1000 м3 газа; W2 - влагосодержание потока газа при условиях вывода ингибитора (например в сепараторе); с1 - концентрация вводимого раствора ингибитора, % вес. (величина заданная); с2 - концентрация выводимого раствора, % вес., величина либо заданная, либо определяемая.

Процесс абсорбции проходит в сравнительно узких температурных пределах. Верхний предел температуры абсорбции определяется потерями гликоля в результате испарения. Практически верхний температурный предел составляет около 35С.

Требуемая температура абсорбции определяется границей, до которой может быть охлажден регенерируемый гликоль входящим газом, теплотой абсорбции поглощенной воды и газоконденсатным отношением. Низкий температурный предел абсорбции определяется влиянием вязкости гликоля на поглотительную способность воды. Минимальная температура процесса примерно равна 10С. Схема установки осушки газа гликолями предусматривает вакуумную регенерацию раствора (рисунок 4.20); она предназначена для глубокой осушки газа. Поступающий газ проходит через входной сепаратор 1, в котором отделяется капельная влага. Затем он попадает в абсорбер - контактор 2 на нижнюю тарелку. Газ в абсорбере поднимается через тарелки вверх, контактируя с раствором гликоля, подающимся на верхнюю тарелку. Концентрированный раствор гликоля, постепенно насыщаясь, опускается в нижнюю часть контактора, откуда через теплообменник, выветриватель 5 и фильтр 6 поступает в выпарную колонну 7. В нижней части выпарной колонны поддерживается температура 150 - 180С, а в верхней части 105С. Регенерированный (концентрированный) раствор гликоля через теплообменник и холодильник снова подается на верхнюю тарелку абсорбера. Затем рабочий цикл начинается снова. Осушенный в абсорбер?/p>