Основы построения многоканальных систем передач

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



ием спектральной плотности амплитуд (аналогично возникает понятие спектральной плотности фаз), которая указывает на удельный вес бесконечно малой амплитуды синусоидального колебания в любой бесконечно узкой полосе частот (рисунок 2.1.5). Таким образом, спектр непериодического сигнала является в общем случае не дискретным, а непрерывным.

.2 Сигналы электросвязи. Ширина полосы частот сигнала

Практически все электрические сигналы, отображающие реальные сообщения содержат бесконечный спектр частот. Для неискажённой передачи таких сигналов потребовался бы канал с бесконечной полосой пропускания. С другой стороны, потеря на приёме хотя бы одной составляющей спектра приводит к искажению временной формы сигнала. Поэтому ставится задача передавать сигнал в ограниченной полосе пропускания канала таким образом, чтобы искажения сигнала удовлетворяли требованиям и качеству передачи информации. Таким образом, полоса частот - это ограниченный (исходя из технико-экономический соображений и требований к качеству передачи) спектр сигнала.

Ширина полосы частот ?F определяется разностью между верхней FВ и нижней FН частотами в спектре сообщения, с учётом его ограничения. Так, для периодической последовательности прямоугольных импульсов полоса сигнала ориентировочно может быть найдена из выражения:

,

где tn - длительность импульса.

Первичный телефонный сигнал (речевое сообщение), называемый также абонентским, является нестационарным случайным процессом с полосой частот от 80 до 12 000 Гц. Разборчивость речи определяется формантами (усиленные области спектра частот), большинство которых расположено в полосе 300 тАж 3400 Гц. Поэтому по рекомендации Международного консультативного комитета по телефонии и телеграфии (МККТТ) для телефонной передачи принята эффективно передаваемая полоса частот 300 тАж 3400 Гц. Такой сигнал называется сигналом тональной частоты (ТЧ). При этом качество передаваемых сигналов получается достаточно высоким - слоговая разборчивость составляет около 90%, а разборчивость фраз - 99% [3].

Сигналы звукового вещания. Источниками звука при передаче программ вещания являются музыкальные инструменты или голоiеловека. Спектр звукового сигнала занимает полосу частот 20тАж20000 Гц.

Для достаточно высокого качества (каналы вещания первого класса) полоса частот ?FC должна составлять 50тАж10000 Гц, для безукоризненного воспроизводства программ вещания (каналы высшего класса) - 30тАж15000 Гц., второго класса - 100тАж6800 Гц [2].

В вещательном телевидении принят метод поочередного преобразования каждого элемента изображения в электрический сигнал с последующей передачей этого сигнала по одному каналу связи. Для реализации такого принципа на передающей стороне применяются специальные электронно-лучевые трубки, преобразующие оптическое изображение передаваемого объекта в развернутый во времени электрический видеосигнал.

Рисунок 2.2.1 - Конструкция передающей трубки

В качестве примера на рисунке 2.2.1 представлен в упрощенном виде один из вариантов передающей трубки. Внутри стеклянной колбы, находящейся под высоким вакуумом, расположены полупрозрачный фотокатод (мишень) и электронный прожектор (ЭП). Снаружи на горловину трубки надета отклоняющая система (ОС). Прожектор формирует тонкий электронный луч, который под воздействием ускоряющего поля направляется к мишени. При помощи отклоняющей системы луч перемещается слева направо (по строкам) и сверху вниз (по кадру), обегая всю поверхность мишени. Совокупность всех (N) строк называется растром. На мишень трубки, покрытую светочувствительным слоем, проецируется изображение. В результате каждый элементарный участок мишени приобретает электрический заряд. Образуется так называемый потенциальный рельеф. Электронный луч, взаимодействуя с каждым участком (точкой) потенциального рельефа, как бы стирает (нейтрализует) ее потенциал. Ток, который течет через сопротивление нагрузки Rн, будет зависеть от освещенности участка мишени, на который попадает электронный луч, и на нагрузке выделится видеосигнал Uс (рисунок 2.2.2). Напряжение видеосигнала будет изменяться от уровня черного, соответствующего наиболее темным участкам передаваемого изображения, до уровня белого, соответствующего наиболее светлым участкам изображения [2].

Рисунок 2.2.2 - Форма телевизионного сигнала на временном интервале, где отсутствуют кадровые импульсы.

Если уровню белого будет соответствовать минимальное значение сигнала, а уровню черного - максимальное, то видеосигнал будет негативным (негативной полярности). Характер видеосигнала зависит от конструкции и принципа действия передающей трубки.

Телевизионный сигнал является импульсным однополярным (так как он является функцией яркости, которая не может быть разнополярной) сигналом. Он имеет сложную форму, и его можно представить в виде суммы постоянной и гармонических составляющих колебаний различных частот. Уровень постоянной составляющей характеризует среднюю яркость передаваемого изображения. При передаче подвижных изображений величина постоянной составляющей будет непрерывно меняться в соответствии с освещенностью. Эти изменения происходят с очень низкими частотами (0-3 Гц). С помощью нижних частот спектра видеосигнала воспроизводятся крупные детали изображения [2] .

Телевидение, равно как и световое кино, стало возможным благодаря инерционности зрения. ?/p>