Основные теоретические положения органической химии. Насыщенные (предельные) углеводороды

Статья - Биология

Другие статьи по предмету Биология

:- + А+ АД (II)

 

В:- + С+ СВ (III)

Реакционная способность молекул, участвующих в гетеролитических реакциях, обусловлена полярностью, поляризуемостью и сопряжением их связей. Вместе с тем, направление и скорость реакций зависят от природы атакующего органическую молекулу реагента, природы растворителя, действия катализаторов и других факторов.

Полярные реагенты разделяются на нуклеофильные и электрофильные. Нуклеофильные, или электронодонорные, реагенты отдают свои электроны углеродному атому в органической молекуле, образуя с ним химическую связь. Электрофильные, или электроноакцепторные, реагенты приобретают электроны от углерода органической молекулы, образуя с ним химическую связь.

Нуклеофильными реагентами являются отрицательно заряженные ионы, молекулы с неподеленными парами электронов, молекулы с сильно поляризованными или легко поляризуемыми связями:

J-, Br-, Cl-, OH-, OR-, CN-, H2O, NH3, ROH.

К электрофильным реагентам относятся положительно заряженные ионы, молекулы с незаполненными электронными оболочками, молекулы галогенов, карбонильные соединения, ацетиленовые углеводороды:

Н+ или Н3O+, NH4+, NO2+, NO+, F2, Cl2, Br2, J2, AlCl3, BF3, RHal, R2C=O, C=C .

Нуклеофильные реагенты отдают электроны, и потому, их можно рассматривать, как восстановители. Электрофильные реагенты оттягивают электроны и тем самым проявляют окислительные свойства. Подобно процессам окисления и восстановления нуклеофильные и электрофильные реакции взаимно связаны.

Существуют все ступени перехода от восстановителей к окислителям и от нуклеофильных реагентов к электрофильным. В зависимости от условий и от природы атакующего реагента одни и те же вещества проявляют либо нуклеофильные (восстановительные), либо электрофильные (окислительные) свойства.

Например, молекула акролеина CH2=CHCH=O может по связи С=С присоединять как нуклеофильный реагент гидросульфит натрия, так и электрофильный реагент молекулу хлора:

О О

H2C=CHCH + NaHSO3 CH2CH2CH

 

О SO3Na О

H2C=CHCH + Cl2 CH2ClCHClCH

В первом случае молекула акролеина проявляет электрофильные, а во втором нуклеофильные свойства. Такие реагенты, как аммиак и вода, в зависимости от условий реакции и природы взаимодействующего с ними вещества, проявляют нуклеофильные и электрофильные свойства.

Гомолитическое расщепление ковалентной связи происходит вследствие разрыва электронной пары:

А : В --- А + В

Гомолитическая диссоциация молекул обычно вызывается термическим и фотохимическим разложением органических веществ. Фотоны с достаточной энергией превращают молекулы в свободные радикалы. Поэтому действие света, равно как и облучение УФ-лучами, инициирует процесс гомолитической диссоциации молекул. В результате гомолитических реакций образуются свободные радикалы.

Свободные радикалы представляют собой электронейтральные частицы с неспаренными электронами. Свободные радикалы подобно свободным одновалентным атомам, обладая большой энергией, являются малоустойчивыми и крайне реакционноспособными частицами. Они не могут существовать длительное время и легко взаимодействуют не только друг с другом (рекомбинация свободных радикалов), но с недиссоциированными молекулами с образованием устойчивых соединений. Однако, существуют и долгоживущие свободные радикалы с сопряженной системой связей.

В настоящее время установлено, что многие органические реакции (окисления, галогенирования, нитрования и другие) протекают с образованием свободных радикалов.

Радикальные реакции обычно являются цепными реакциями, т.к. взаимодействие свободного радикала с молекулой приводит к образованию нового свободного радикала или атома с развитием цепи химических превращений. Примером цепных радикальных реакций является реакция взаимодействия галогенов с углеводородами при освещении:

Сl : Cl + h 2Cl инициирование цепи

CH4 + Cl CH3 + HCl развитие или рост

CH3 + Cl2 CH3Cl + Cl цепи

Обрыв цепи происходит вследствие исчезновения из газовой фазы свободных радикалов в результате их рекомбинации:

Cl + Cl = Cl2

CH3 + CH3 = C2H6 обрыв цепи

Причиной обрыва цепи являются также столкновения радикалов со стенками сосуда и с молекулами примесей.

При взаимодействии свободных радикалов или атомов с молекулами с двойными связями происходит гомолитический разрыв -связи и образование нового свободного радикала:

Br2 + h Br + Br

Br + >C=CCBrC<

>CBrCCBrCBr<

Энергия, необходимая для разрыва -связи (пары электронов), тем меньше, чем больше устойчивость образующегося при этом свободного радикала.

Радикальные реакции преимущественно реакции автокаталитические. Они играют первостепенную роль в процессах полимеризации, ведущих к получению ценнейших полимерных материалов.

Классификация органических реакций

По конечному результату:

А) реакции присоединения (RCH=CH2 + Br2 RCHBrCH2Br);

Б) реакции отщепления (элиминирования)

(RCHBrCH2R + KOH RCH = CHR +KBr + H2O)

В) реакции замещения (RH + Cl2 RCl + HCl)

Г) реакции изомеризации (CH3CH2CH2CH3 CH3CHCH3

 

По механизму протекания: CH3

А) Гетеролитические (полярные и ионные) реакции

Нуклеофильные реакции (R :Cl + :OH- R : OH + :Cl-)

Электрофильные реакции ( RNH2 + H+ RNH3+)

Б) Гомолитические (радикальные) реакции

Сl : Cl + h 2Cl

CH4 + Cl CH3 + HCl

CH3 + Cl2 CH3Cl + Cl

3) По количеству молекул, участвующих в элементарной стадии, протекаю-

щей с наименьшей скоростью:

Мономолеклярные,

Бимолекулярные и т.д.

Эти классы реакций неразрывно свя